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Recap: DC09 - Research field

Model Order Reduction of coupled vibro-acoustic systems

Objectives:

= Combination of IGA and FEM/BEM for vibro-acoustic systems

= Explore Model-Order Reduction (MoR) schemes to IGA-iIBEM for coupled vibro-acoustic methods
= Incorporate Fast-Multipole and H-matrix approaches within IGA-BEM MoR framework

=m)p| Considering one domain- acoustic domain- for now [ IGA-BEM
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Fundamentals of Computational Acoustics
Acoustic Basics (l)

» For acoustic problems: Ap(#) + k*p () = —jpowqa6(r,1y)

Helmholtz equation (Hermann Ludwig Ferdinand von Helmholtz 1821-1894)

ya

=l

interior problem exterior problem

S P
Q

normal vector
7,75 position vectors

.y Q computational domain complementary domain
: C ; W r boundary of Q and Q.
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Figure 1.: Description of a general acoustic problem




Fundamentals of Computational Acoustics
Acoustic Basics + IGA

In literature: direct and indirect methods

Variational formulation of the sound pressure p(#): u(r;): double layer potential

p(F) = fnf (,u(rf) aGE;;rf) —o(ry)G(r, rf)) dQy(rr) o(rs): single layer potential

Advantage of indirect BEM (iBEM): Combined interior / exterior problems, e.g. open boundaries can be solved

Approximation of single- and double-layer potentials o (r¢) and p(ry):

n

0y = (1) = ) Ni(ry)dy 1 €T,
i=1
n

try = u(ry) = Z Ni (ry)dy 7 €ly
i=1

where: n number of NURBS basis functions

N;(rs) basis function
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Motivation of Research
Model Order Reduction of coupled vibro-acoustic systems

Why MoR IGA-BEM?
= Only boundary needs to be discretized in BEM compared to FEM

X~ =l==d= \)(
= Fulfillment of Sommerfeld radiation condition at infinity for BEM \',: X
= Sensitive to geometric description of surface [ Incorporation of IGA with BEM 1 y
A

\ 7/
= However: There is no free lunch! ( theorem of conservation of difficulties) So--4"

= System matrices in BEM are dense, non-affine and highly oscillatory! FEM BEM

= Use MoR IGA-BEM to reduce computational cost

Figure 2: Overview of numerical methods
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IGA-IBEM Implementation

Computation of the double layer potential (I)

od; dynO »di = dj»
= Patches in general have non-conforming discretizations T3 —
= Patch coupling needed! I I
[ >
(F
i

vy v

= Herein: Patch coupling by virtual refinement in a master-slave formulation [Co16] v
= Virtual refinement of interface DOFs until patches are conforming 3 I I

oy . L— & . —
= Use substitution method for condensation of slave DoFs : di=Aude P
Double layer potential d, = A;A.,.d,.\ d, = Atdy,
6
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Design for 1GA-type Figure 3.: (a) 3D sphere, (b) Top view double layer potential x at 100 Hz without enforcement
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IGA-iIBEM Implementation

Computation of the double layer potential (1)

Double layer potential ;: 57 x10™
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Figure 5.: (a) non-conforming multipatch geometry: sphere; (b) double layer i potential at 100 Hz; (c) logarithmic maximum error of the sound pressure over frequency
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Model-Order Reduction of BEM systems
Problem of BEM systems

» BEM system expressed as: A(w)x(w) = b(w) where A:¥ - CV*N and x,b: ¥ - CV
= Dealing with dense, non-affine and highly oscillatory matrices

* |ncrease of computational time and memory storage with increase of complexity and frequency!

m
=) \odel Order Reduction (MoR) _ _
Linear parametric system:
» Find lower-order model that approximates the original high-
order model, where the lower-order model facilitates both A(w)x(w) = b(w) A(w) x(@)| = |bw)

High computational effort and
storage requirement needed 4 m m

Reduced parametric system:

A (@) x(w) = | b (w)
G e.Ci o A, (@)%, () = b, ()

r r

computationally efficiency and accuracy @

Design for 1GA-type

discretization workflows Figure 6.: Schematic scheme projection MoR
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Model-Order Reduction within IGA-framework
|dea

= Combination of standard MoR schemes with BEM are not directly applicable due to the non-affine characteristic
= Cumbersome to construct representative basis + after obtaining representative basis a reduction of computational effort is not

guaranteed for a frequency sweep analysis

Chebyshev polynomials of the first kind

ikT 151
» Responsible for non-affine characteristic: Green’s function G = ier where k = % 1
Idea [Pa20]: s,
= Approximation of BEM system by an affine expression: oo —l
= Herein: Chebyshev polynomial Approximation 45 — ol
M M M M
A@) = D 'a(@T; i b@) ~ Y 'a@a = | ) 'a(@)T; |x@) = ) ‘a(@a
=0 i=0 i=0 i=0

2 2

t Ge » l: N T; = M1 ﬁOA(wk)Ci(wK) 9 = 31 ﬁiob(w;c)ci(wic) Wy = COS [W

Design for 1GA-type
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Model-Order Reduction within IGA-framework
Recycling of Krylov subspaces (l)

= Apply Galerkin projection:
x(w) = X(w) =Vi(w) b(w) whereV e C™" r«&m
= Obtain projection basis V for all w € W by recycling Krylov subspaces
» Subspace recycling refers that the Krylov subspaces of the it system are utilized for accelerating the convergence of iterative
solution procedure of the (i + 1)5t system
= Expand Krylov subspaces ?C,‘,‘:i of dimension m for all w and generate basis V,,.

* Projection basis V constructed by SVD factorization

M M M M
Areq (@) = Z ,Ci (w)Ti,red i breq(w) = Z ,Ci ((U)Qi,red - Z ,Ci (w)Ti,red x(w) = Z ,Ci (w)qi,red
i=0 i=0 i=0 i=0
T, = —2—yM WA(w,)Vc; (w,) =2 yM Wh(w,)c;i(w,) W, = COS [n(x—%)]
k=0 KV Ci Wy qi = 3r41&K=0 k) Ci (Wi Kk = M1

; l LM+
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Model-Order Reduction within IGA-framework
Recycling of Krylov subspaces (l)

* |ntroducing:

Cme «:m «:771)(7' «:7'><m CTXT

» Full order model Chebyshev polynomial approximation:

M M
(Z'q(w) o )x(w)=2'ci(w> g

i=0 i=0

2

M

2

M+1ZO A@e) ci(w,) ai = 37
K=

M
T, = - 1;1:(«»,() (@)

AJ'
NI =25
SN Ry
TS
A

- Design for iGA-type
& discretization workflows

c”




Model-Order Reduction within IGA-framework
Recycling of Krylov subspaces (l)

» Reduced order model Chebyshev polynomial approximation:

M M
2 2
Tirea = M + 12 w A(w,) V ci(wy) Qijrea = M + 12 w b(w,) c;i(wy)
K=0 k=0

i=0 =0

M M
= (Z ,Ci ((,()) Ti,red ).X((U) = Z ,Ci ((,()) Qired

s
QoS
A A

TS

Va <
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Model-Order Reduction within IGA-framework
Fixed Krylov Subspace Recycling (FKSR)

450 ‘ . . Absolute error of ;. between FOM and FKSR X0
400 | . 0.2 128
Drawback of FKSR: 350 | 1 015 |%°
. . c | ] 0.1F 124
» Krylov subspace dimension m and 8 %
7] 0.05
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Figure 7.: (a) Subspace dimension of Krylov subspaces employedat ) for the construction of the reduction bases employing different

; G l sampling patterns, (b) Absolute error of u between the FOM and FKSR
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Model-Order Reduction within IGA-framework
Introduction of Automatic Krylov Subspace Recycling (AKR)

Automatic Krylov Subspace Recycling (AKR) [ Pa21]

= Motivation: Find optimal settings to construct reduction basis

= Adaptive procedure that allows order m and No. of sampled master frequencies in Q to vary with frequency and produce a ROM that
is under a predefined error threshold

= Dimension m(w) of the respective Krylov subspace ?C,‘;;(w) foreach w € Q as well as Q are determined iteratively through an
automated procedure

*» |n each iteration a residual is built and compared to a user-defined error threshold

7Ix, Design for I1GA-type
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Model-Order Reduction within IGA-framework
Automatic Krylov Subspace Recycling (AKR)

Absolute error of ;. between FOM and AKR with error limit ¢:

450 ' ' ‘ ' 0.0001 10
=+  Fixed Krylov Subspace Recycling . "
400 + X Automatic Krylov Subspace Recycling | 10
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< ; W Figure 8.: (a) Subspace dimension of Krylov subspaces employedat () for the construction of the reduction bases employing different
sampling patterns, (b) Absolute error of u between the FOM and AKR with error limit e = 1E — 04
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Future work
Acoustics and vibro-acoustics

= Extend MoR scheme for BEM systems for multiple design variables for shape optimization
So far:

= Only considered the acoustic domain

Future work vibro-acoustic:

= Just coupling at the interface (boundary) of fluid domain and structural domain

= Assume FEM for structure and BEM for acoustic domain

= Explore MoR schemes for fully coupled vibro-acoustic systems

7Ix, Design for I1GA-type
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Thank you!
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