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Executive summary  

This report summarizes the progress of my PhD research, which focuses on developing advanced 

computational methods using the Shifted Boundary Method (SBM) within the IsoGeometric 

Analysis (IGA) framework for Computational Fluid Dynamics (CFD). The work addresses three 

main areas: Laplace equations, Stokes flow with Variational Multi-Scale (VMS) stabilization, and 

Non-Newtonian fluid dynamics. 

This method resolves challenges associated with immersed boundaries by shifting boundary 

conditions to a surrogate boundary, ensuring numerical stability and optimal convergence. The 

use of B-Spline basis functions enhances solution smoothness and accuracy. 

By coupling IGA with VMS stabilization, I address the velocity-pressure interaction in viscous 

flows. This approach ensures robust and accurate simulations. 

The framework is extended to Bingham fluids, integrating stabilized formulations to capture 

nonlinear viscoplastic behavior. Results demonstrate the importance of solution smoothness in 

achieving optimal convergence. 

This research bridges design and analysis workflows, advancing efficient and accurate 

simulations for industrially relevant CFD problems. Future work will expand these methods to 

more complex phenomena and geometries. 
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List of abbreviations  

IGA IsoGeometric Analysis  

FEM Finite Element Method 

SBM Shifted Boundary Method 

VMS Variational Multi-Scale 

CFD Computational Fluid Dynamics 
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Introduction 

This report presents advancements in computational methods aimed at enhancing the efficiency 

and accuracy of fluid dynamics simulations, with a particular focus on the Shifted Boundary 

Method (SBM) within the IsoGeometric Analysis (IGA) framework. The primary objective is to 

develop and evaluate innovative techniques that streamline the pre-processing phase, enabling 

rapid, robust, and precise flow analysis for immersed objects. This is especially pertinent in 

industrial sectors such as automotive, aeronautical, and mechanical engineering, where reducing 

pre-processing time and improving simulation efficiency are critical challenges. 

The structure of this report is organized to address both low and high-order immersed methods 

applied to Computational Fluid Dynamics (CFD). Specifically, the work explores the capabilities 

of the Shifted Boundary Method (SBM) within the context of IsoGeometric Analysis (IGA). 

The overarching goal of this research is to establish a robust and efficient framework for analyzing 

CFD problems, ranging from scalar convection-diffusion equations to viscous incompressible 

Navier-Stokes equations. The development and implementation of these methods are carried out 

using the open-source Kratos-Multiphysics platform, aligning with the objectives of the GECKO 

project to integrate advanced computational tools into industrial workflows. 

This report is structured as follows: 

1. SBM in IGA for Laplacian Problems: This section delves into the analysis and 

implementation of the Shifted Boundary Method within the IsoGeometric Analysis 

framework for solving Laplacian problems. The SBM addresses challenges associated 

with complex geometries by shifting boundary conditions to a surrogate boundary, 

thereby simplifying integration and enhancing numerical stability. The use of B-Spline 

basis functions in IGA ensures smooth and accurate solutions, demonstrating the 

method's effectiveness in handling intricate boundary conditions. 

2. SBM in IGA for Stokes Flow: This section focuses on the development and evaluation 

of SBM in the IGA context for solving Stokes flow problems. It emphasizes the accuracy 

and computational performance of the method, particularly in handling the coupling 

between velocity and pressure fields inherent in incompressible flows. The integration of 

Variational Multi-Scale (VMS) stabilization within this framework addresses numerical 

instabilities, ensuring robust simulations even in the presence of complex geometries. 

3. SBM in IGA for Non-Newtonian Fluids: This section applies the SBM approach to 

non-Newtonian fluid dynamics using the IGA framework, addressing specific 

complexities in fluid behavior and numerical implementation. The focus is on modeling 

viscoplastic materials, such as Bingham fluids, where the relationship between stress 

and strain rate is nonlinear. The stabilized formulation within the SBM-IGA framework 

effectively captures the unique characteristics of Non-Newtonian fluids, providing 

accurate and efficient simulation results. 

This document contributes to the overarching goals of the GECKO project by demonstrating the 

feasibility and benefits of integrating advanced unfitted discretization techniques into industrial 

CFD workflows. It sets the stage for further advancements in the field of immersed methods for 

fluid dynamics applications, ensuring compatibility with real-world CAD geometries and 

enhancing the design-to-analysis process. 
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1. The Shifted Boundary Method in IGA 

IGA has transformed computational mechanics by bridging the gap between Computer-Aided 

Design (CAD) and Computer-Aided Engineering (CAE). Originally introduced by Hughes et al. 

[1,2,3,4,5], IGA enables precise geometric representation and high continuity across element 

boundaries [6], making it an effective tool for simulating complex geometries [7,8,9]. The 

foundation of IGA lies in B-Spline and NURBS basis functions, which allow for smooth transitions 

and local refinement, enhancing the accuracy and robustness of simulations [10,11]. 

Despite its advantages, traditional boundary-fitted IGA methods face challenges with complex 

geometries, such as the need for watertight geometries and high computational costs in handling 

trimmed models [12,13]. Immersed boundary IGA methods, such as the Finite Cell Method (FCM) 

[14,15] and Isogeometric Boundary Representation Analysis (IBRA) [16,17,18,19,20], alleviate 

some of these challenges by using non-boundary-fitted discretizations. However, these 

approaches are often hindered by issues like the small cut-cell problem [21,22], which leads to 

poor computational performance and difficulty in solver convergence. 

The SBM [23,24], initially developed within the FEM context, offers a promising solution to these 

challenges. SBM simplifies integration over complex geometries by shifting boundary conditions 

to a surrogate boundary and modifying boundary values using Taylor expansions. This approach 

avoids the small cut-cell problem, maintains optimal accuracy, and enables significant 

simplification in mesh generation and refinement. Previous applications of SBM in FEM have 

demonstrated its effectiveness in areas such as elasticity and incompressible fluid dynamics 

[25,26,27,28]. This study pioneers the integration of SBM with IGA, proposing an alternative to 

IBRA that eliminates the need for trimming techniques. By treating the boundary as unfitted, the 

proposed approach simplifies pre-processing and retains the accuracy and continuity advantages 

of IGA. The structure includes an introduction to the SBM framework, its application to the Poisson 

problem, and numerical validations.[31]. 

The Shifted Boundary Method (SBM) introduces key innovations. 

● Surrogate boundary representation: the true boundary, denoted as Γ, is replaced by a 

surrogate boundary, which is constructed using the edges of a Cartesian background 

grid. This simplification avoids complications associated with small cut-cells in 

boundary-fitted methods (see Figure 1). 

● Taylor expansion for boundary conditions: boundary conditions are imposed on the 

surrogate boundary using a Taylor expansion of arbitrary order mmm. This approach 

accurately approximates the conditions that would have been applied on the true 

boundary, preserving the desired level of accuracy. 

● Weak imposition of boundary conditions: the shifted boundary operator is employed to 

weakly enforce Dirichlet and Neumann boundary conditions, ensuring numerical 

stability and compatibility with the unfitted nature of the method. 

These features collectively enable SBM to achieve robust and accurate solutions without the 

computational overhead associated with traditional boundary-fitted approaches. 
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Figure 1: An example of a domain 𝛺 with a ring-like shape treated with the SBM in a Cartesian 

grid. Blue and red solid lines denote the true and surrogate boundaries respectively. The 

computational domain is shaded in light yellow, while brown denotes the intersected cells that are 

not part of the SBM computation. 
 

The Taylor expansion plays a fundamental role in the SBM for accurately shifting boundary 

conditions from the true boundary to the surrogate boundary. This process involves performing 

an m-th order Taylor expansion of the variable of interest, u, at the surrogate boundary. 

Assuming u is sufficiently smooth within the strip between Γ and the surrogate, the expansion 

incorporates directional derivatives along the vector d, capturing the influence of the distance 

between the true and surrogate boundaries. 

The m-th order Taylor expansion includes a remainder term that becomes negligible as the 

distance ∥ d∥  approaches zero. Dirichlet conditions defined on Γ are extended using the 

boundary shift operator, enabling the surrogate boundary to approximate the true boundary 

conditions.  

 

Neglecting the remainder term simplifies the boundary condition approximation to an m-th order 

shifted expression, which is subsequently enforced weakly in the SBM framework. 

 

This approach ensures both computational efficiency and numerical accuracy while avoiding the 

complexities associated with direct boundary alignment [31]. 

 

Moreover, we have taken advantage of two ideas recently published: 
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1. Penalty-Free formulation: A penalty-free weak formulation [29] eliminates the need for 

penalty calibration, which is traditionally required for Nitsche's method. The SBM 

variational form ensures numerical stability and accuracy without the overhead of 

parameter tuning. 

2. Optimal surrogate boundary selection: the surrogate boundary minimizes the 

distance function between the surrogate and true boundaries [30]. A parameter λ 

determines the inclusion of cut elements in the surrogate domain, with λ=0.5 found to 

be optimal for minimizing error. 

 

Figure 2: Selection of the surrogate boundary. Two-dimensional complex embedded holes 

treated using the SBM. The red solid line denotes the surrogate boundary corresponding to 𝛺 = 

0 and the green one to 𝛺 = 0.5 (optimal surrogate boundary).  

In Figure 3 we report the convergence studies of the two cases in Figure 2 when applying only 

Dirichlet boundary conditions. 
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Figure 3: Selection of the surrogate boundary. Convergence study of two cases curvilinear and 

diamond of Figure 2  respectively, considering 𝛺 = 0 (red solid line) and 𝛺 = 0.5 (blue solid line). 

The order of the basis functions is indicated by the following symbols: triangles 𝛺 = 1, squares 𝛺 

= 2, and stars 𝛺 = 3. 

As previously mentioned, B-Spline basis functions are utilized to represent both the geometry 

and the solution fields. The implementation of the SBM avoids the use of trimmed knot spans, 

which are characteristic of the IBRA approach (refer to the left panel of Figure 4). The right 

panel of Figure 4 presents a comparison between the SBM and IBRA methodologies using 

linear, quadratic, and cubic B-Spline basis functions. The results demonstrate that both 

methods achieve very similar error norms and exhibit optimal convergence rates across all 

orders of the basis functions. 
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Figure 4: SBM vs IBRA. Left: the diamond shape applying the IBRA technique; the green dots denote the 

integration points, while the solid blue line highlights the true boundary. Right: the convergence analysis of 

the same case, using 𝛺 = 1 (triangular symbols), 𝛺 = 2 (square symbols), and 𝛺 = 3 (star symbols) and 

comparing the IBRA approach (red solid line) and the SBM (blue solid line) with the optimal surrogate 

boundary. 

  

For more details and examples we refer to the paper “The Shifted Boundary Method in 

Isogeometric Analysis” [31], where the authors also analyze the case of Neumann boundary 

conditions. 
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2. SBM-IGA for Stokes fluids 

This section explores the application of the SBM within the IGA framework to solve Stokes flow 

problems. The Stokes equations describe the behavior of viscous, incompressible fluids under 

low Reynolds number conditions, where inertial forces are negligible compared to viscous forces. 

These equations involve coupling between the velocity field and the pressure field, which 

introduces additional numerical complexity compared to the Poisson problem discussed in 

Section 1. 

The Stokes problem consists of solving the following equations: 

 

together with the boundary conditions. The weak form after integration by parts: 

 

where v is the test function for the velocity vector field, and q is the test function for the pressure 

scalar field. 

The Stokes problem is solved within a Variational Multi-Scale (VMS) [32-33] framework, which 

provides a stabilized formulation to handle the coupling of the velocity and pressure fields. In the 

VMS approach: 

● The solution space is decomposed into resolved (coarse) and unresolved (fine) scales. 

● Stabilization terms are introduced to account for the effects of unresolved scales on the 

resolved solution, enhancing numerical robustness and accuracy. 

 

where 

 

The VMS method, combined with B-Spline basis functions in the IGA framework, allows for 

arbitrary order discretizations of the velocity and pressure fields. Unlike the simpler Poisson 

problem, the Stokes equations involve higher-order terms that do not simplify directly, making the 

implementation of VMS more intricate. The weak formulation now is 
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Therefore we have three additional terms with respect to a formulation without the sub-scale: 

 

The implementation of the SBM for Stokes flow in IGA follows a similar strategy as in Section 1: 

● B-Spline basis functions: The velocity and pressure fields are approximated using B-

Splines of arbitrary order, ensuring smooth and accurate solutions. 

● Shifted boundary conditions: Dirichlet and Neumann boundary conditions are imposed 

weakly on the surrogate boundary using Taylor expansions. 

● Stabilization terms: VMS stabilization terms are added to the variational formulation to 

address numerical instabilities arising from the coupling between velocity and pressure 

fields. 

The combination of SBM and VMS within the IGA framework enables the efficient and accurate 

solution of Stokes flow problems. 

In addition to Stokes fluids, we introduced the use of  non-Newtonian fluids, specifically the 

Bingham fluid model. The Bingham constitutive law describes a material that behaves as a solid 

when the stress magnitude is below a certain yield stress and flows as a viscous fluid when the 

stress exceeds the yield stress. The stabilized formulation of the Bingham fluid incorporates an 

exponential factor that smooths the transition. 

For small values of the regularization parameter, the behavior transitions smoothly between solid-

like and fluid-like phases. Figure 5 shows the Stress vs Strain diagram. 
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Figure 5: Stress vs. Strain Rate for the Bingham Model with Various Regularization Parameters 

(m). The graph illustrates the stress response of a Bingham fluid as a function of strain rate 

(gamma_dot) for different values of the regularization parameter mmm. 

We can show some preliminary results obtained with a manufactured solution for a Stokes fluid 

having a Bingham constitutive law. The manufactured solution is a smooth non-polynomial 

function in both the components of the velocity and in the pressure field. The convergence studies 

in the L2 norm of the error for velocity and pressure is shown in Figure 6 and Figure 7 (m = 10 

and m = 300 respectively) for linear, quadratic, and cubic B-Splines basis functions. 

 

Figure 6: Convergence Study for Velocity and Pressure Errors with Yield Stress τ_0 = 100 and 

regularization parameter m=10. The figure shows the error convergence for the velocity (left) 

and pressure (right) fields as the mesh size h decreases. Results are presented for B-Spline 

basis functions of degree p=1 (blue), p=2 (red), and p=3 (cyan). 
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Figure 7: Convergence Study for Velocity and Pressure Errors with Yield Stress τ_0 = 100 and 

regularization parameter m=300. The figure shows the error convergence for the velocity (left) 

and pressure (right) fields as the mesh size h decreases. Results are presented for B-Spline 

basis functions of degree p=1 (blue), p=2 (red), and p=3 (cyan). 

We observed that the exact solution must be smooth, including its derivatives, to achieve optimal 

convergence when using B-Splines. Unlike classical FEM, where the solution is typically 

continuous between elements, the IGA framework with B-Splines ensures continuity throughout 

the domain. If the solution exhibits discontinuities, particularly under nonlinear constitutive laws 

such as the Bingham model, the method fails to achieve the expected optimal convergence rates. 

Therefore, when applying IGA to problems with nonlinear laws, it is essential to ensure the 

smoothness of the solution to fully leverage the advantages of B-Splines. 

We have also validated our code by testing it on the well-known lid-driven cavity problem, as 

illustrated in Figure 8, adapted from [34]. This benchmark problem is widely recognized in 

computational fluid dynamics as a standard test for assessing the accuracy and robustness of 

numerical methods applied to fluid flow simulations. The lid-driven cavity problem involves a 

square domain where the top boundary (lid) moves at a constant velocity, inducing circulation 

within the fluid. The remaining boundaries are stationary and impose no-slip conditions. This 

configuration creates a primary vortex at the center of the domain. 
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Figure 8: Cavity problem. The flow in a 2D cavity filled with a Bingham fluid. The problem is set 

up following Mitsoulis and Zisis [34]. Defining a square domain Ω = (0, H) × (0, H), we impose a 

horizontal velocity u_x = 1 m/s on the y = H. 

Since no analytical solution is available for the lid-driven cavity problem, we have compared our 

results with the benchmark studies presented in [34] and [35]. This comparison focuses on two 

critical aspects of the flow behavior for different values of the yield stress: the extent of the yielded 

and unyielded regions within the domain, and the position of the eye of the main vortex that forms 

in the central-upper zone.  

The yielded region, defined by areas where the fluid behaves as a viscous material, and the 

unyielded region, where the fluid behaves like a solid due to insufficient stress to induce flow, are 

key features of viscoplastic flows. Accurately capturing these regions provides insight into the 

robustness and precision of the numerical method (see Figure 9 and Figure 10).  

Figure 9: Yielded region. Comparison of the yielded region in the cavity flow problem. The 

Bingham number is equal to 20.0 and m = 300. Left: results with B-Splines with p=2 and 50x50 

knot spans. Right: results in FEM from [35] using local refinement. 

Figure 10: Yielded region. Comparison of the yielded region in the cavity flow problem. The 

Bingham number is equal to 20.0 and m = 300. Left: results with B-Splines with p=2 and 100x100 

knot spans. Right: results in FEM from [35] using local refinement. 
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Additionally, the location of the vortex eye serves as an important indicator of the method’s ability 

to predict the flow dynamics accurately. The vortex position is influenced by both the yield stress 

and the imposed lid motion, making it a sensitive measure for evaluating the performance of our 

implementation (see Figure 11). 

 

Figure 11: Eye vertex position. Comparison of the eye vertex y-coordinate in the cavity flow 

problem varying the Bingham number, m = 300. Left: results with B-Splines with p=1 & p=2. Right: 

results in FEM from [34] with 40x40 divisions. 

Our results exhibit strong agreement with those in [34] and [35], confirming the capability of our 

Shifted Boundary Method (SBM) within the IsoGeometric Analysis (IGA) framework to handle 

complex boundary conditions and accurately simulate viscoplastic flow behavior in this classical 

benchmark problem. 
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1. CONCLUSIONS  

This report has presented significant progress in the development and application of the SBM 

within the IGA framework, addressing key challenges in CFD. The study has demonstrated the 

effectiveness of the SBM in solving Laplace equations, Stokes flow problems, and Non-

Newtonian fluid dynamics, showcasing its potential as a robust tool for handling complex 

geometries and boundary conditions. The integration of SBM with IGA has provided a 

streamlined approach that avoids the complexities associated with traditional boundary-fitted 

methods, such as trimmed knot spans while maintaining high levels of numerical accuracy and 

stability. The penalty-free formulation and optimal surrogate boundary selection have further 

enhanced the method’s efficiency, making it well-suited for industrial applications requiring high-

fidelity simulations. 

Future research directions will focus on extending the application of SBM to simulate the full 

Navier-Stokes equations, enabling the analysis of nonlinear phenomena. Another important 

step is advancing the current methodology to three-dimensional problems, particularly for 

Stokes flow and beyond, which will provide a more comprehensive framework for addressing 

real-world engineering challenges. Additionally, the ability to simulate industrial cases with 

highly complex geometries and dynamic interactions, such as those found in automotive and 

aeronautical engineering, will be pursued. 

Overall, this work lays a solid foundation for further exploration and application of SBM in IGA, 

bridging the gap between advanced computational tools and practical industrial workflows, and 

contributing to the advancement of CFD techniques for solving challenging fluid dynamics 

problems. 
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