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Executive summary  

This report summarizes the progress and ongoing research activities in the second year of a PhD 

project focused on advancing computational solid mechanics, with particular emphasis on 

damage mechanics and the application of Isogeometric Analysis (IGA). The work aims to build a 

comprehensive understanding of solid mechanics principles, improve numerical modeling 

capabilities, and develop computational tools for the simulation of material damage and failure. 

Key developments in this phase of the project include: 

1. Strengthening Theoretical Foundations in Solid Mechanics 

A thorough review of fundamental concepts in structural analysis and solid mechanics 

has been undertaken, primarily based on Oñate's Structural Analysis with the Finite 

Element Method [2]. This theoretical groundwork supports the understanding and 

implementation of computational methods for material behavior modeling. 

2. Numerical Modeling and Computational Implementation 

Practical experience was gained through the implementation of finite element methods 

(FEM) for basic structural problems. This included solving 1D truss displacement 

problems and extending the models to include damage mechanics behavior using 

isotropic damage models based on the work of Oliver et al. [1]. Python and C++ 

programming languages were used to develop object-oriented codes that simulate 

stress-strain behavior during loading and unloading cycles. 

3. Advancing to 2D and 3D Damage Models 

Progress has been made in formulating 2D isotropic damage models with the goal of 

extending this to 3D solid elements. This includes adapting linear elastic models and 

introducing nonlinear constitutive models relevant to damage mechanics. A key focus is 

on integrating regularization techniques to address mesh dependence caused by strain 

softening, specifically through the refinement of the characteristic length parameter. 

4. Integration with Kratos Multiphysics 

Efforts have been directed toward understanding and adapting Kratos Multiphysics for 

damage mechanics applications. The definition of the characteristic length in FEM was 

reviewed, and a new formulation for IGA was proposed to ensure mesh independence 

by linking the characteristic length to the NURBS-based geometry representation. 

5. Ongoing and Future Work 

Current work involves the implementation and validation of the proposed characteristic 

length formulation for IGA within Kratos Multiphysics. Future research will focus on 

extending damage models to 3D, validating numerical results, and comparing the 

performance of FEM and IGA in modeling damage and fracture mechanics. 

This report reflects steady progress in building a strong theoretical and computational foundation 

necessary for addressing complex problems in solid mechanics. The current stage sets the 

groundwork for more advanced research in damage mechanics and computational modeling in 

the upcoming phases of the PhD project. 
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Introduction 

In the evolving landscape of computational solid mechanics, the integration of design and analysis 

workflows remains a critical challenge, particularly in industries that handle complex geometries 

such as automotive and aerospace engineering. Traditional design processes rely heavily on 

Computer-Aided Design (CAD) for geometry modeling and the Finite Element Method (FEM) for 

numerical analysis. However, this separation introduces significant pre-processing efforts, 

primarily due to the need for meshing CAD geometries for FEM analysis. 

Isogeometric Analysis (IGA) has emerged as a promising solution to bridge this gap by utilizing 

Non-Uniform Rational B-Splines (NURBS)—the foundational elements of CAD—directly in 

numerical simulations. This approach eliminates the meshing bottleneck and offers high continuity 

and precision in geometric representation. Yet, applying IGA to complex non-linear solid 

mechanics problems poses challenges, especially when integrating sophisticated material 

models like plasticity, damage, and hyperelasticity. These issues are compounded when handling 

trimmed or irregular geometries where conventional IGA struggles to maintain accuracy and 

consistency. 

Immersed Boundary Representation Analysis (IBRA)-type discretizations present an innovative 

extension to IGA by facilitating the analysis of geometries with trims, holes, and other irregularities 

without the need for conforming meshes. This method allows for flexible and efficient modeling of 

complex 3D solids by embedding the geometry within a structured computational domain. The 

combined use of IGA and IBRA holds significant potential for improving the stability and accuracy 

of simulations involving non-linear material behaviors in industrial applications. 

Current research focuses on enhancing these discretization methods to handle trimmed 

volumetric solids and complex material interactions, aiming to deliver reliable and industry-

relevant computational tools. This integration promises to streamline the design-to-analysis 

pipeline, reduce computational costs, and increase the fidelity of simulations, marking a significant 

advancement in computational solid mechanics. 
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1. MATHEMATICAL FRAMEWORK IN SOLID 

MECHANICS 

In computational solid mechanics, mathematical equations form the foundation for modeling 

the mechanical behavior of solid materials under external forces. These equations describe 

the relationship between external loads, material properties, and the response of the solid 

body, including stress, strain, displacement, and deformation. The mathematical framework 

for solving problems in solid mechanics is built on balance laws, constitutive models, and 

boundary conditions. 

1.1 Governing Equations of Solid Mechanics 

The primary governing equations in solid mechanics are derived from fundamental principles 

such as Newton's laws of motion, conservation of mass, and conservation of energy. 

For a solid body, the basic set of equations can be summarized as follows: 

○ 1.1.1 Equilibrium Equations 

The equilibrium equations represent the balance of forces acting on a material body. They 

ensure that the internal forces (stresses) balance the external loads applied to the body. The 

equilibrium equations in solid mechanics are given by: 

𝜎𝑖𝑗,𝑗 + 𝑏𝑖 = 0  in 𝛺 (3.1) 

where: 

● 𝜎𝑖𝑗 is the stress tensor (with components 𝜎𝑥𝑥 , 𝜎𝑦𝑦, 𝜎𝑧𝑧 , 𝜎𝑥𝑦 , 𝜎𝑦𝑧 , 𝜎𝑧𝑥) 

● 𝑏𝑖 represents the body forces (per unit volume, e.g., gravitational forces), 

● 𝛺 is the domain of the solid body, and 

● The comma (,) denotes a derivative with respect to the spatial coordinates. 

This equation ensures that the internal forces (the divergence of the stress tensor) balance 

the body forces at every point in the material. 

○ 1.1.2 Kinematic Equations 

The kinematic equations describe the relationship between the displacement of points in the 

solid body and the strain developed due to the deformation. The displacement vector uiu_iui 

gives the change in position of a point in the body: 

𝑢𝑖 = 𝑢𝑖(𝑥1, 𝑥2, 𝑥3, 𝑡) where 𝑖 = 1,2,3 (3.2) 

The strain tensor 𝜖𝑖𝑗 is related to the displacement field through the following equation: 

𝜖𝑖𝑗 =
1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) 

 

where: 
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● 𝑢𝑖 is the displacement field (i.e., the movement of material points), 

● 𝜖𝑖𝑗 is the strain tensor, which characterizes the deformation of the material, 

● 𝑥𝑖 are the spatial coordinates. 

○ 1.1.3 Constitutive Models 

The constitutive relations describe the material behavior and how stresses are related to 

strains. These models depend on the type of material (elastic, plastic, viscoelastic, etc.). For 

linear elastic materials, the relationship is given by Hooke's law: 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜖𝑘𝑙 

where: 

● 𝐶𝑖𝑗𝑘𝑙 is the elastic modulus tensor that characterizes the material's resistance to 

deformation, 

● 𝜖𝑘𝑙 is the strain tensor. 

For isotropic linear elasticity, this simplifies to: 

𝜎𝑖𝑗 = 𝜆𝛿𝑖𝑗𝜖𝑘𝑘 + 2𝜇𝜖𝑖𝑗 

where: 

● 𝜆 and 𝜇 are Lamé’s parameters (related to material stiffness), 

● 𝜖𝑘𝑘 is the trace of the strain tensor (the volumetric strain), 

● 𝛿𝑖𝑗 is the Kronecker delta. 

In the case of nonlinear materials (e.g., plasticity, damage), the constitutive equations will 

be more complex, incorporating material behavior under large strains, plastic deformation, 

or damage evolution. 

1.2 Damage Mechanics 

In damage mechanics, the material is considered to degrade over time or under loading, leading 

to a reduction in the material's stiffness and strength. The mathematical formulation of damage 

mechanics requires additional equations to model the material's response to damage, including 

damage evolution and failure criteria. 

○ 1.2.1 Damage Variable 

Damage is often modeled using a scalar damage variable 𝑑 that ranges from 0 (undamaged) to 

1 (completely damaged). The damage variable affects the material’s stiffness and strength. The 

effective stress is related to the damage variable as: 

𝜎𝑒𝑓𝑓 = (1 − 𝐷)𝜎 

where: 
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● 𝜎𝑒𝑓𝑓 is the effective stress, 

● 𝜎 is the nominal stress, 

● 𝐷 is the damage variable. 

○ 1.2.2 Damage Evolution 

The evolution of the damage variable can be described by various models, such as the 

continuum damage mechanics (CDM) approach. One commonly used formulation is based on 

plasticity-damage coupling, where the damage evolves as a function of the accumulated plastic 

strain or equivalent stress. The rate of change of the damage variable DDD is given by: 

�̇� = 𝑓(𝜎𝑒𝑓𝑓 , 𝜖𝑝𝑙) 

where: 

● �̇� is the rate of change of the damage variable, 

● 𝑓 is a damage evolution function, 

● 𝜖𝑝𝑙 is the plastic strain. 

Various damage evolution laws, such as strain-based or stress-based laws, can be used 

depending on the material behavior and failure modes. 

○ 1.2.3 Failure Criteria 

To predict material failure, several failure criteria can be used in damage mechanics. One 

common criterion is the maximum stress criterion, where failure occurs when the stress reaches 

a critical value: 

∣ 𝜎 ∣= 𝜎𝑓𝑎𝑖𝑙 

where 𝜎𝑓𝑎𝑖𝑙 is the failure stress of the material. In more advanced models, failure may depend 

on both stress and strain or other factors, such as cycle loading in fatigue. 
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2. COMPARISON OF IGA & FEM IN COMPUTATIONAL 

SOLID MECHANICS 

In the field of computational solid mechanics, the prediction of mechanical behavior and 

damage evolution in materials is a critical challenge. Among the most widely used numerical 

techniques for solving solid mechanics problems, Isogeometric Analysis (IGA) and Finite 

Element Method (FEM) stand out due to their ability to model complex material behaviors, 

including damage, cracks, and deformations. This chapter provides an in-depth comparison 

of IGA and FEM in the context of computational solid mechanics, focusing on damage 

mechanics and the ability to simulate material failure and crack propagation. 

2.1 Introduction to Isogeometric Analysis and Finite Element Method 

Isogeometric Analysis (IGA), introduced by Hughes et al. (2005), integrates Computer-

Aided Design (CAD) representations directly into the analysis process, enabling a seamless 

representation of geometry and the solution fields. The basis of IGA is the use of Non-

Uniform Rational B-Splines (NURBS) or B-splines for both the geometry and the solution 

field (e.g., displacements, stress, etc.). This exact representation of geometry provides 

significant advantages over traditional finite element methods. 

The Finite Element Method (FEM), on the other hand, has been the standard numerical 

method for solving solid mechanics problems for decades. FEM discretizes the domain into 

small elements, where the problem is solved numerically using polynomial approximations. 

While FEM has proven to be highly versatile and effective in a wide range of problems, it 

typically involves approximations of the geometry, leading to potential errors, especially in 

complex structures. 

Both methods are widely used in computational solid mechanics, including in the study of 

damage mechanics, where the goal is to predict the evolution of damage in materials under 

various loading conditions. However, their differences in geometry representation, element 

formulation, and crack modeling make them suitable for different types of damage problems. 

2.2 Geometry Representation and Continuity 

● Isogeometric Analysis (IGA): A key feature of IGA is its exact representation of 

geometry. Using NURBS or B-splines, IGA can represent curved and complex geometries 

exactly without the approximation errors seen in FEM. This is particularly beneficial when 

modeling intricate geometries, such as those encountered in damage mechanics 

simulations involving cracks or material interfaces. IGA also provides higher-order 

continuity (𝐶1, 𝐶2, etc.) in its shape functions, making it ideal for simulating smooth 

deformation and material behavior. 

 

● Finite Element Method (FEM): FEM approximates geometry using a discretized mesh, 

which can lead to errors when modeling complex geometries. The accuracy of the geometry 

representation in FEM depends on the mesh resolution and element type used. FEM typically 

employs lower-order continuity (C^0), meaning that while displacement continuity is 

maintained, higher-order derivatives such as stress and strain may exhibit discontinuities. 

This lower continuity can be a limitation when dealing with smooth material behavior but is 

suitable for handling discontinuous damage such as cracks. 
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● Comparison: While IGA provides a more accurate and continuous representation of the 

geometry, FEM is more flexible in handling different types of element formulations, which 

makes it more adaptable to problems involving localized damage and cracks. 

2.3 Element Design and Mesh Sensitivity 

● Isogeometric Analysis (IGA): IGA uses higher-order elements that are capable of 

capturing complex material behavior with fewer degrees of freedom compared to FEM. The 

higher-order basis functions in IGA provide better accuracy for problems involving 

smooth deformations and damage evolution. In many cases, IGA requires fewer 

elements to achieve the same level of accuracy, especially for problems involving complex 

geometries. 

 

● Finite Element Method (FEM): FEM typically uses lower-order elements that require 

finer meshing and local refinements to achieve the desired level of accuracy. In problems 

involving damage localization, such as crack propagation, fine mesh refinement near the 

crack tip is often necessary. Mesh sensitivity is a common issue in FEM, especially when 

dealing with stress concentrators or sharp damage features. 

 

● Comparison: While IGA generally requires fewer elements for high accuracy in smooth 

problems, FEM's flexible meshing and adaptive refinement capabilities make it better suited 

for problems involving sharp damage features, such as cracks, where localized refinement 

is needed. 

2.4 Modeling Cracks and Damage Propagation 

● Isogeometric Analysis (IGA) and Crack Propagation: A significant challenge in 

damage mechanics is simulating the propagation of cracks. IGA’s smooth basis functions 

are not naturally suited for capturing the discontinuities introduced by cracks, as they lead 

to sharp changes in displacement and stress fields. The inherent higher continuity of IGA 

can create difficulties in modeling crack initiation and propagation in a realistic manner, 

especially in mode I fracture where stress singularities are present. 

 

 Approaches to Handle Cracks in IGA: To address this challenge, several strategies 

have been developed: 

 

 Phase-Field Models: These models introduce a continuous representation of 

cracks, simulating crack growth as a gradual transition from intact to damaged 

material. Phase-field models are particularly well-suited to IGA, as they allow for the 

smooth evolution of damage without the need for sharp discontinuities (Miehe et al., 

2010). 

 Extended Finite Element Method (XFEM): XFEM can be combined with IGA to 

enrich the basis functions near the crack region, allowing for the representation of 

cracks without the need for remeshing (Belytschko et al., 2009). 

 

● Finite Element Method (FEM) and Crack Propagation: FEM, due to its lower 

continuity nature, is better suited for simulating cracks and discontinuous damage. 

FEM can easily accommodate cracks using various methods: 

 Extended Finite Element Method (XFEM): XFEM extends the FEM by enriching 

the displacement field near crack regions to capture discontinuities in displacement 

and stress without the need for remeshing (Moës et al., 1999). 
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● Comparison: While IGA faces challenges in directly simulating cracks due to its 

smoothness and higher continuity, techniques like phase-field models, and XFEM allow 

IGA to simulate cracks effectively. On the other hand, FEM is naturally suited to handle 

discontinuous damage and crack propagation due to its ability to introduce sharp 

discontinuities and perform adaptive meshing. 

2.5 Computational Efficiency 

● Isogeometric Analysis (IGA): IGA’s exact representation of geometry and higher-

order elements make it computationally efficient for problems with smooth damage 

evolution and complex geometries. The use of fewer elements can lead to significant 

computational savings. However, when applied to highly nonlinear damage models, the 

integration over higher-order elements can be computationally expensive (Hughes et al., 

2005). 

 

● Finite Element Method (FEM): FEM is highly adaptable and can be computationally 

efficient, especially when adaptive meshing or parallel processing techniques are used. 

However, problems involving cracks or localized damage often require fine mesh 

refinements, increasing computational cost. Remeshing during crack propagation can add 

further overhead (Zienkiewicz et al., 2005). 

 

● Comparison: IGA is more efficient for problems with smooth damage evolution and 

less complex crack behavior, while FEM is better suited for large-scale problems 

involving crack propagation and local damage. 
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3. ISOTROPIC DAMAGE MODELS 

● 3.1 Isotropic Damage Models in One-Dimensional Systems 

■ Figure 3.1. Stress-strain curve during both loading and unloading phases for the given 

material properties, with a Young's modulus (E) of 1.00E+08 Pa, yield stress of 2.00E+06 

Pa, and fracture energy of 5.00E+04 J/m2 

A critical area of study in damage mechanics is the development of isotropic damage 

models, which describe the degradation of material properties due to loading and unloading 

cycles. A commonly used formulation for such models is that introduced by Oliver et al. 

(Oli+90), which characterizes the stress-strain relationship of materials undergoing 

damage. 

In the 1D isotropic damage model, the material response is governed by the evolution of a 

damage variable, which reduces the effective stiffness of the material as damage 

accumulates. This model accounts for both loading and unloading behavior, and its 

implementation involves solving the system of equations that govern the damage evolution 

process. For instance, by considering a material with properties such as Young’s modulus 

(E) of 1E+08 Pa, a yield stress of 2 MPa, and a fracture energy of 5E+04 J/m², the 

material’s degradation can be studied by solving the stress-strain relations for different 

loading paths, as illustrated by the stress-strain curve (Figure 3.1). 

3.2 Extension to Two-Dimensional Damage Models 

Building on the 1D isotropic damage model, a natural progression is to extend the formulation 

to two-dimensional systems. In these models, the material exhibits strain-softening 

behavior, which requires careful attention to regularization techniques to prevent mesh 

dependence in simulations. The characteristic length (𝑙𝑐) is a critical parameter in this 

context, as it determines the scale at which damage is regularized, ensuring that damage 

and fracture processes are not overly influenced by the numerical mesh. 
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In traditional FEM formulations, the characteristic length is computed based on the maximum 

distance from the centroid of an element to its nodes. For a triangular element, the 

characteristic length 𝑙𝑐 is given by: 

𝑙𝑐 = 𝑚𝑎𝑥 (∥ 𝐱𝑐 − 𝐱𝑖 ∥), 𝑖 = 1,2,3 

where xc\mathbf{x}_c is the centroid and xi\mathbf{x}_i are the coordinates of the element’s 

vertices. This approach is effective in FEM, where the mesh is discretized with nodes. 

However, this definition is not directly applicable to Isogeometric Analysis (IGA), where 

elements are defined in terms of NURBS (Non-Uniform Rational B-Splines) basis functions 

rather than nodal points. 

3.3 Characteristic Length in Isogeometric Analysis (IGA) 

In IGA, the elements are not tied to a discrete mesh of nodes, but rather defined by the 

continuous nature of the NURBS basis functions. To maintain the role of the characteristic 

length in regularizing damage mechanics models within IGA, a new formulation is needed. 

The characteristic length 𝑙𝑐 in IGA is defined based on the parametric spans of the NURBS 

basis functions, rather than relying on the geometry’s nodal discretization. For instance, for 

a quadrilateral element, the characteristic length can be expressed as: 

𝑙𝑐 = 𝑚𝑎𝑥 (॥𝐱(𝑢𝑖+1, 𝑣𝑗) − 𝐱(𝑢𝑖, 𝑣𝑗)॥,॥𝐱(𝑢𝑖, 𝑣𝑗+1) − 𝐱(𝑢𝑖, 𝑣𝑗)॥), 

where 𝐱(𝑢, 𝑣) is the mapping from the parametric space to the physical space, and uu and 

vv are the parameters defining the NURBS surface. This definition ensures that the 

characteristic length in IGA reflects the smooth, continuous nature of the geometry and 

maintains the regularization properties needed for accurate damage modeling. 

3.4 Role of Regularization in Damage Mechanics 

In damage mechanics, the regularization of strain-softening behavior is critical to obtaining 

stable and physically meaningful solutions. Without regularization, damage models can 

exhibit mesh dependence, where the results vary significantly with the mesh size, leading 

to unphysical crack patterns and non-converging solutions. The characteristic length 𝑙𝑐, 

whether defined in FEM or IGA, serves as a scale factor that regularizes the damage 

evolution, ensuring that the results are independent of the discretization used. 

The regularization process is particularly important in the simulation of fracture and material 

degradation, where local damage must be captured without introducing numerical artifacts. 

By defining 𝑙𝑐 in a way that is consistent with the underlying geometry, as in the case of the 

IGA-based definition, the approach mitigates mesh dependency and allows for more 

accurate simulations of complex material behavior. 
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4. CONCLUSIONS  

The integration of advanced computational methods, such as Isogeometric Analysis (IGA) 

and damage mechanics, represents a significant step forward in the modeling of complex 

material behavior, particularly in the context of fracture and degradation. By extending 

traditional FEM formulations to IGA, a mesh-independent framework has been developed 

that improves the accuracy and efficiency of damage simulations. 

Future work will focus on implementing these formulations within comprehensive 

computational frameworks, such as KRATOS Multiphysics, and conducting numerical 

experiments to validate the effectiveness of the IGA-based characteristic length in capturing 

the true material response to loading and damage. This work aims to provide more reliable 

and physically realistic models for the analysis of material failure, with potential applications 

in a wide range of engineering problems. 
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