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Executive summary  

This report outlines the progress and key findings of ongoing PhD research focused on 
developing innovative strategies for partitioned multi-disciplinary simulations, particularly in the 
context of Fluid-Structure Interaction (FSI) problems. The study addresses the challenges of 
coupling different discretizations in FSI, with an emphasis on advancing data transfer methods 
and enhancing simulation accuracy across complex technical systems. 

A central focus of this research is the development of robust and efficient co-simulation 
techniques, leveraging Isogeometric B-Rep Analysis (IBRA) for its CAD-based surface 
representation. By integrating IBRA with other solver types, the study enables flexible 
combinations of discretization approaches tailored to diverse physical domains. Among the 
notable contributions is the introduction of advanced data transfer operators, including the 
Mortar Mapper, designed for seamless coupling of body-fitted and unfitted discretizations. 

Additionally, the research introduces a novel solution to the singularity problem encountered 
when imposing strong boundary conditions on unfitted meshes. This solution also addresses the 
challenge of mapping a field between unfitted meshes, enabling more accurate and stable 
simulations in scenarios involving non-conforming discretizations, such as low order FEM 
discretizations (usually used for the fluid domain) and trimmed NURBS patches. 

These methods, implemented within the Kratos-Multiphysics open-source framework, are 
validated through benchmark problems, demonstrating their potential to improve accuracy and 
computational efficiency. 

This work provides a significant foundation for advancing partitioned simulations in engineering 
applications. Future efforts will focus on publishing the methodology for boundary condition 
enforcement on unfitted meshes and conducting comparative studies of mapping operators in 
FSI simulations. These advancements aim to support the design of innovative solutions in fields 
such as aerospace, biomechanics, and civil engineering. 
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Introduction 

This report presents advanced computational methods for multiphysics simulations, focusing on 
partitioned approaches in Fluid-Structure Interaction (FSI) problems. These methods aim to 
address critical challenges in coupling different discretization techniques, ensuring robust and 
accurate simulations that meet the demands of complex industrial applications. 

The study begins by contrasting monolithic and partitioned approaches in multiphysics 
simulations, highlighting the advantages, challenges, and practical implications of each strategy. 
It then delves into partitioned simulations of FSI problems, underscoring the importance of 
efficient and accurate data transfer operators in achieving stability and precision. 

A comprehensive discussion is provided on key techniques for data mapping at the coupling 
interface, including Nearest Neighbour, Nearest Element and Mortar Mapper. Special emphasis 
is placed on the Mortar Mapper, which has been effectively applied to both body-fitted and 
unfitted discretizations. This operator is recognized as a reliable solution for coupling different 
discretizations, facilitating seamless integration across domains. 

The report also includes a case study on partitioned simulations of IsoGeometric Analysis (IGA) 
multipatch coupling using the Mortar Mapper, with specific attention to challenges associated 
with trimming. A novel solution is introduced for mapping fields in unfitted discretization 
scenarios, addressing singularity issues and enabling simulations between non-conforming 
meshes. Benchmark results from FSI problems validate the effectiveness of these methods, 
demonstrating their potential to improve simulation accuracy and computational efficiency. 

By advancing methodologies for partitioned multiphysics simulations, this work contributes to a 
deeper understanding and broader applicability of these techniques in solving complex 
engineering problems. The findings have significant implications for fields such as aerospace, 
biomechanics, and civil engineering, where reliable and efficient simulations are critical to 
innovation and performance. 
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1.​ Monolithic vs Partitioned Approaches in 
Multiphysics Simulations 
In multiphysics problem-solving, two primary approaches are widely used: monolithic and 
partitioned strategies. 

Monolithic Approach 

The monolithic approach involves solving all governing equations simultaneously within a 
unified framework. This method leads to a more stable and robust formulation, as all physical 
interactions are accounted for within a single system of equations.  

However, the monolithic strategy often results in a large, complex global system that can be 
difficult to solve, especially as the size of the problem increases. As the global system grows, 
the conditioning of the system tends to worsen, making it more computationally demanding. 
Despite these challenges, the monolithic approach offers high accuracy and robustness, making 
it well-suited for certain complex multiphysics problems. 

 

Figure 1: System Matrix Level of the Monolithic Approach 

Partitioned Approach 

In contrast, the partitioned approach separates the problem into distinct subsystems, solving 
each independently while coupling them through data exchange, often in the form of boundary 
conditions.  

This approach allows for the reuse of existing single-field solvers, a key advantage in the 
co-simulation philosophy, where different physical domains are solved independently. The 
partitioned method is modular, flexible, and scalable, enabling the integration of different solvers 
for various disciplines. However, it is often less robust than the monolithic approach, as the 
coupling between subsystems may introduce stability challenges, particularly in highly coupled 
or stiff problems. Despite this, partitioned approaches are more flexible and allow for easier 
integration of specialized solvers, making them valuable for complex multidisciplinary 
simulations. 
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Figure 2: System Matrix Level of the Partitioned Approach 
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2.​ Partitioned Simulation of FSI Problems 
Fluid-structure interaction (FSI) simulations are essential for accurately modeling and predicting 
the behavior of systems where fluids and structures interact dynamically. It plays a critical role in 
various engineering fields, including aerospace, biomechanics, and civil engineering, where 
structural integrity and performance depend on fluid forces. By capturing the mutual influence 
between fluids and structures, FSI enables the design of safer and more efficient systems, such 
as aircraft wings, blood flow in arteries, and bridges subjected to wind forces. Without FSI 
analysis, critical phenomena like vibrations, instabilities, and failure risks may be overlooked, 
leading to inaccurate predictions and potential structural failures.  

FSI, like any multiphysics problem, can be solved using either a monolithic or partitioned 
approach. Monolithic methods solve the fluid and structural equations simultaneously, ensuring 
strong coupling but requiring complex solver development. The Partitioned method, on the other 
hand, is a computational approach where the fluid and structural domains are solved 
independently using specialized solvers, which are coupled to exchange key data at their 
interface.  

The structural solver provides the displacement field, defining the motion and deformation of the 
structure, which is then used by the fluid solver to update the fluid domain and enforce the 
moving boundary conditions. Conversely, the fluid solver calculates the pressure field (and 
sometimes shear stresses), which acts as the load applied to the structure. This bidirectional 
exchange of displacements and pressure fields ensures the mutual influence of the fluid and 
structure, enabling the accurate simulation of their interaction.  

Partitioned FSI offers flexibility and modularity by integrating existing solvers without significant 
modification, but it relies heavily on effective data transfer and coupling algorithms to maintain 
stability and accuracy, particularly in cases involving strong interactions or large deformations. 
The data transfer between the fluid and structural domains is accomplished through various 
data transfer operators, which ensure that critical information, such as displacement and 
pressure fields, is exchanged correctly. These operators are vital for ensuring the robustness of 
the coupling, and their efficiency will be addressed shortly. 

 
Figure 3: Data Transfer in Partitioned FSI Simulations  
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3.​ Fundamental Concepts of CoSimulation 
CoSimulation is inherently a partitioned approach. In this context, multiple simulation tools or 
solvers, each specializing in a specific physical phenomenon, are coupled together to model 
complex systems involving interactions between different physical domains. Unlike the 
monolithic approach, where all phenomena are solved together within a single system, 
CoSimulation allows for the independent solution of each phenomenon.  

These individual solvers are then coupled through specialized methods and tools to ensure 
accurate interaction between the domains. This partitioned nature of CoSimulation enables the 
reuse of existing solvers, offering flexibility and reducing development time, though it may 
require careful attention to ensure stability and accuracy, especially in cases involving strong 
interactions. 

3.1 Building Blocks of CoSimulation 

CoSimulation using the partitioned approach consists of several fundamental building blocks 
that are essential for ensuring effective and stable interactions between different solvers. These 
building blocks are synchronization, data exchange, and data transfer, as illustrated in Figure 4. 

 

Figure 4: Building Blocks of CoSimulation (Ref. [1]) 

1)​ Synchronization and Solution Techniques: The first building block of CoSimulation, 
shown in Figure 4, is synchronization, which encompasses the coupling algorithm and 
strategy. This block determines the sequence in which the participating tools are 
applied, as well as the incorporation of additional components, such as relaxation 
techniques. The selection of these procedures greatly impacts the robustness, 
accuracy, performance, efficiency, and stability of the coupled simulation, making it 
crucial to choose them based on the specific problem being addressed. 

2)​ Data Exchange and Data Transfer: Each coupling partner employs its own solution 
technique, chosen based on what best suits the specific application. Consequently, 
each tool handles and stores data in its own format. For CoSimulation, it is essential to 
transfer data between coupling partners. Often, this requires data exchange.  
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Additionally, the data must be converted from one format to another, a process referred 
to as data transfer in this work, as shown in column three of Figure 4. The flow of 
information proceeds from the origin to the destination, as illustrated in Figure 5. 

 

Figure 5: Flow of information during data transfer between solution techniques, from origin to 
destination, from the origin to the destination (Ref. [1]) 
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4.     Data Transfer Operators for CoSimulation  
Data transfer operators, such as mapping operators, are fundamental components of partitioned 
solution strategies within CoSimulation frameworks. A variety of techniques are available for 
transferring data between different domains, including methods like Nearest Element, Nearest 
Neighbour, RBF Interpolation, and Mortar Mapping. It is important to emphasize that maintaining 
the non-intrusiveness of existing single-field codes is a critical requirement for co-simulation 
approaches. We will now discuss these data transfer operators, with particular focus on the 
mortar mapper. 

4.1 Nearest Neighbour (Closest Point) 

This mapper is perhaps one of the most straightforward mapping techniques: each point in the 
destination identifies its closest counterpart in the origin based on geometry and adopts its 
value.  

The key benefits of this mapper are its simplicity in implementation and reliability. It only 
requires point clouds as input, rather than complete meshes, and the transfer matrix  consists 𝐻
solely of ones and zeros, making it highly memory-efficient. This mapper is particularly effective 
in distributed systems, as it only needs to search for neighboring points within different 
partitions.  

On the downside, its accuracy is relatively low, especially with highly irregular meshes, 
potentially resulting in a step-like pattern on the destination if the discretizations vary too much. 
When applied to matching meshes, this method can be considered a special case of the nearest 
neighbor technique, enabling various optimizations like customized search settings. 

 
Figure 6: Nearest Neighbour Mapper 
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4.2 Nearest Element 

This mapper utilizes the geometry of the origin interface by interpolating values through its 
shape functions, as described in [2]. Each point in the destination identifies the closest elements 
in the origin and projects onto them. The element with a valid projection and the shortest 
projected distance is selected, which is why this method is also known as the closest projection 
mapper. The assigned value at the destination is then computed by interpolating with the shape 
functions of the chosen element. Consequently, the transfer matrix  contains the shape 𝐻
function values evaluated at the projection points. 

The main advantages of this mapper are its relatively simple implementation and its ability to 
interpolate values smoothly. However, a key drawback is that it requires elements and their 
shape functions as input. Since the method relies on projections, these can sometimes fail in 
practical applications, necessitating additional handling to enhance robustness. 

 

Figure 6: Projection to the origin nearest element (dark red) in nearest element interpolation 
(Ref. [2]) 

4.3 The Mortar Mapper for Body-Fitted and Unfitted 
Discretizations 

One of the most commonly used data transfer operators in CoSimulation approaches is the 
"Mortar Mapper", which has been the primary focus of our work.  

Let ɸo(x) be a known origin field and ɸD(x) the destination field. The Mortar Mapper can be 
derived from the minimization of the following functional 𝜑(ɸD(x)) (minimization of the L2-Norm 
Error between the origin and destination field): 

 

As in any FEM-like approach, both fields are represented as a linear combination of nodal 
values and their associated shape functions. To minimize the functional, its stationarity with 
respect to the nodal values of the destination field is imposed. This leads to a minimization 
problem that can be expressed in the following matrix form: 
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The primary challenge in the mortar mapper is determining the integration domain ΓOD, which 
represents the overlapping region between a destination element and a neighboring origin 
element. The following subsections will outline the procedure for defining this integration domain 
across various discretization scenarios. 

After implementing this mapper in the Kratos Multiphysics framework for various discretization 
techniques, including FEM and IGA, we began applying this data transfer operator to 
increasingly complex scenarios. Initially, we focused on partitioned multipatch coupling within 
the IGA context, followed by its application to fluid-structure interaction problems. 

4.3.1 1D FEM-FEM Interface 

In the 1D FEM-FEM case, each node from the destination domain is projected onto the origin, 
forming a new intersecting domain. Integration points are then positioned within each resulting 
interval. Graphically: 

 

Figure 7: Definition of the integration domain for the 1D FEM-FEM interface (Ref. [3]) 

4.3.2 2D FEM-FEM Interface 

In the 2D FEM-FEM interface case, each element from the destination domain is projected onto 
the origin elements, and their intersection is determined to obtain the overlap area. The resulting 
geometry is typically a polygon, which is then triangulated. Integration points are subsequently 
placed within each triangle. Graphically: 
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Figure 8: Definition of the integration domain for the 2D FEM-FEM interface (Ref. [2]) 

4.3.3 1D IBRA-IBRA or IBRA-FEM Interface 

The process of determining the intersective integration domain in the 1D Isogeometric B-Rep 
Analysis (IBRA) mortar mapper consists of three main steps. First, the knots from the parameter 
space of the slave patch (destination) are projected onto the parameter space of the master 
patch (origin) to establish a geometric relationship between the two. Next, integration points are 
defined within the parameter space of the master patch, ensuring proper numerical integration 
over the overlap region. Finally, these integration points are mapped back from the master 
domain’s parameter space to the parameter space of the slave domain, effectively defining the 
intersective integration domain needed for accurate coupling. 

 

Figure 9: Definition of the integration domain for the 1D IBRA-IBRA interface (Ref. [5]) 
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4.3.4 2D IBRA-FEM Interface 

A particularly relevant scenario for 3D Fluid-Structure Interaction (FSI) simulations arises when 
the structural domain is discretized using a high-order NURBS multipatch surface, while the fluid 
domain is represented by a low-order finite element or finite volume mesh. In such cases, it is 
crucial to define an appropriate integration domain between the origin (fluid domain) and the 
destination (structural domain) for the mortar mapper. This process involves several steps to 
ensure accurate coupling between the two domains. 

 

Figure 10: Low order FEM discretization (fluid) and CAD surface (structure) (Ref. [4]) 

First, the finite element nodes from the fluid domain are projected onto the parameter space of 
the NURBS patch, and the corresponding elements are reconstructed. For elements that are 
only partially projected into the patch, the finite element edges are clipped using the tessellated 
trimming curves that define the patch’s boundary, with the help of some clipping algorithm. Next, 
the projected finite elements are clipped with the knot lines of the patch’s parametric space, 
followed by a simple triangulation of the resulting geometry. Finally, integration points are placed 
in the master domain (fluid domain) and then projected back onto the destination finite elements 
(structural domain) to complete the coupling process. These steps ensure that the integration 
domain is well-defined for the mortar mapper, enabling an effective exchange of data between 
the fluid and structural solvers in FSI simulations. 

 

Figure 11: Projection of the low order element to the CAD surface (Ref. [4])  
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5.     Partitioned Simulation of IGA Multipatch Coupling 
Using the Mortar Mapper 
After integrating this mapper into the Kratos Multiphysics framework [6] for various discretization 
techniques, such as FEM and IGA, we started applying this data transfer operator to 
progressively more complex scenarios. Our initial focus was on partitioned multipatch coupling 
within the IGA framework. 

The algorithm for this partitioned simulation of multipatch coupling is illustrated in the following 
figure. 

 

Figure 12: Partitioned Multipatch Coupling Algorithm 
To utilize this partitioned framework for multipatch coupling, a simplified benchmark was 
designed to study various combinations of discretization strategies, including IGA, FEM, 
body-fitted (untrimmed IGA), and unfitted (trimmed IGA) configurations. This analysis aimed to 
evaluate the advantages, drawbacks, and potential challenges associated with these different 
discretization approaches. 

In general, discretization techniques can be classified into two main categories: body-fitted and 
unfitted discretization. Before exploring various examples, we would like to review the difference 
between body-fitted and unfitted discretizations. 

Body-fitted discretization 

A body-fitted discretization refers to a numerical discretization technique where the 
computational mesh conforms to the geometry of the domain. The mesh elements align with the 
boundaries of the physical object, ensuring accurate representation of the geometry. In the case 
of FEM body-fitted meshes, considering that the shape functions are interpolatory, the boundary  
conditions are imposed in a strong manner.  However, in IGA, where the shape functions are  
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typically non-interpolatory (e.g., NURBS), boundary conditions are generally imposed weakly 
even when the discretization is body-fitted (untrimmed). The following figure represents an 
example of a body-fitted discretization of a geometry.             

 

Figure 13: Body-fitted discretization of an arbitrary geometry  

Unfitted discretization 

An unfitted discretization (also called immersed or embedded methods) is a technique where 
the computational mesh does not conform to the geometry. Instead, the geometry is embedded 
into the background mesh, and boundary conditions are typically imposed weakly, meaning they 
are enforced through different methods such as penalty methods, Lagrange multipliers, or 
Nitsche’s method. 

 

Figure 14: Unfitted discretization of an arbitrary geometry  
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Now, we would like to introduce the proposed example, which is essentially a two-patch plate 
under membrane action: 

 

Figure 15: Problem Definition of the Proposed Benchmark 

In this case, the analytical solution is represented by a linear displacement field in the 
x-direction: 

 

Now, we will proceed to analyze the different scenarios in detail, with particular focus on the 
numerical results obtained from the partitioned simulation and the well-posedness of the 
mapping matrix (indicated by the condition number of the right-hand side mapping matrix), 
which is essential for the data transfer between the meshes. 

Before proceeding, it is important to note that IBRA meshes [7] with trimming essentially 
represent an unfitted discretization, as the shape functions used in the analysis are primarily 
those defining the NURBS surface. 

5.1 Case 1: IBRA Untrimmed - IBRA Untrimmed 

In this scenario, when the discretizations of both the origin and destination domains are 
body-fitted, the data transfer problem is well-defined (the matrix  is not singular), allowing us 𝑀

𝐷𝐷

to accurately compute the nodal values in the destination domain. 

The following figure presents the color map for the displacement field obtained from the 
partitioned simulation,  with the a continuous displacement field and the displacement at the tip 
aligning as expected with the analytical solution: 

 

Figure 16: Displacement field u(x) for the Case 1 
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5.2 Case 2: IBRA Trimmed - IBRA Untrimmed 

In this second scenario, where the origin domain is unfitted, and the destination domain is 
body-fitted, the data transfer problem remains well-defined (the matrix  is not singular). 𝑀

𝐷𝐷

The following figure presents the color map for the displacement field obtained from the 
partitioned simulation, with the a continuous displacement field and displacement at the tip 
aligning as expected with the analytical solution: 

 

Figure 17: Displacement field u(x) for the Case 2 

5.3 Case 3: IBRA Trimmed - IBRA Trimmed 

In this final scenario, where the origin domain is body-fitted and the destination domain is 
unfitted, the matrix becomes singular, rendering the problem ill-defined. 𝑀

𝐷𝐷 

 

Figure 18: Case 3 
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In this scenario, the mapping matrix  that needs to be inverted is singular. Specifically, when 𝑀

𝐷𝐷

the trimming line in the destination domain aligns with a knot line, identical columns and rows 
can be observed, leading to redundancy. 

 

Mathematically, this implies the existence of infinitely many possible solutions for the destination 
nodal values that satisfy the original minimization problem. 

Motivated by the challenges associated with mapping a field between unfitted discretizations, a 
novel algorithm was developed to address this issue within the context of mapping problems. 
This approach evolved into a general framework for strongly imposing Dirichlet boundary 
conditions in unfitted problems, which will be presented in an upcoming publication. 

5.3.1  Physical Interpretation of the Singularity for Unfitted 
Discretizations 

Consider a simplified example involving an unfitted linear FEM discretization for a bar structure. 
In this case, the goal is to impose a Dirichlet boundary condition at the left end of the bar 
(middle of the first element). The governing equation and boundary conditions for this problem 
are as follows: 

 

 

Figure 19: Illustration of the simple bar structure 

In this particular problem,  and . It is possible to interpret the imposition of 𝑝(𝑥) = 0 𝑢
Γ

𝐷 

= 0

Dirichlet boundary conditions as the minimization of the following functional which represents 
the L2-norm error between the desired value at the boundary and the field : 𝑢(𝑥)
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In this simple case,  is a single point. Finally, we obtain: Γ
𝐷

 

Focusing on the first element, it is clear that there are infinitely many ways to assign values to 
 and  so that the boundary condition is satisfied.  𝑢

1
𝑢

2

 

Figure 20: Infinite possibilities for the imposition of the BC 

The concept of imposition of strong Dirichlet boundary conditions as a minimization problem is 
generalized. As already mentioned above, the Dirichlet boundary condition can be interpreted 
as the minimization of the 𝐿2 -norm error between the field and the imposed value. Back to the 
two different scenarios depending on the discretization technique, in body-fitted discretization, 
with this approach, the linear system is well-posed, and solving it directly ensures that the 
solution exactly matches the Dirichlet boundary condition at the specified points, in the unfitted 
approach, the resulting linear system is ill-posed, leading to infinitely many solutions (exactly the 
same as the bar structure case presented before). 

The key aspect here is that the infinite solutions differ only in the gradient of the field between 
and the second node. This raises the question: what if this issue is addressed by enforcing 𝑢

Γ
𝐷 

an additional constraint on the gradient within the first element (the trimmed element)? 
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6.     The Extended Gradient Method and its Algorithm 
The main idea of the proposed extended gradient method (EGM) is to enable the strong 
imposition of Dirichlet BCs on unfitted meshes without altering the underlying weak form of the 
PDE, resulting in a non-intrusive method. In this new method, a novel functional to define strong 
Dirichlet boundary conditions on unfitted meshes is introduced. The functional incorporates two 
key components: the first term is exactly equal to the original formulation, and the second term 
is the regularization or stabilization term. This term ensures consistency of the normal gradient 
within trimmed elements. The gradient is an approximation (e.g., interpolation) of the actual 
normal gradient on these elements at the iteration k. In the first iteration, the gradient is 
assigned to zero. The newly proposed functional is expressed as follows: 

 

The algorithm below summarizes the procedure of EGM: 

 
The advantages and disadvantages of this method are summarized below: 

​ (+) Non-intrusive approach: Enables the application of Dirichlet boundary conditions in 
unfitted discretizations without modifying the underlying weak form of the PDE. 

​ (+) Improved conditioning of the LHS: Results in better conditioning of the left-hand side 
(LHS) matrix.  

​ (+) No Small Cut-Cell Instability. ​ 
​ (+) Discretization-independent: Works seamlessly with different discretization methods 
and is highly generalizable. 

​ (+) Physics-agnostic: Can be applied to a wide range of physical problems without 
requiring problem-specific modifications. 

​ ​(+) More computationally efficient for explicit dynamics problems. 
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​ ​(-) Iterative nature: The method requires solving the system iteratively, making it less 
computationally efficient compared to direct approaches used in intrusive methods.  

​ (-) Less computationally efficient than intrusive methods. 
​ ​(-) Challenges in higher-order schemes: In higher-order methods, such as Isogeometric 
Analysis (IGA), achieving an accurate approximation of the gradient within trimmed 
elements can be more challenging. 

Due to confidentiality concerns, as this proposed method has not yet been published, this is the 
only information that can be provided at this time. Once the publication is released, all details 
will be shared. 
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7.     Fluid-Structure Interaction Benchmarks 
Research was conducted on 2D and 3D FSI benchmarks, employing FEM discretization for the 
fluid mesh and IBRA discretization for the structural elements. A body-fitted mortar mapper was 
utilized to transfer data between the non-conforming meshes. The coupling process was 
handled using a partitioned Gauss-Seidel algorithm, with an MVQN convergence accelerator 
applied to speed up the convergence. 

Presented below are color graphs illustrating the velocity and displacement fields from the 
simulations conducted. 

 

Figure 21: FSI Mok Benchmark 

The following plot illustrates the x-displacements at two specific points within the structure: 

 

Figure 22: x-displacements at two specific positions in the structure 

 

                             Technical Report   ​ ​ Page 26 of 30 
​  



 
 
 
 
These values were compared with those from Kratos examples and the Mok paper, 
demonstrating good agreement: 

 

Figure 23: Comparison of results for the Mok Benchmark across different sources 

The final two figures present the results obtained for the FSI Turek and Lid-Driven Cavity 
benchmarks: 

 

Figure 24: FSI Turek Benchmark 
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Figure 25: FSI 3D Lid Driven Cavity Benchmark 
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8.     Conclusions  
This report highlights the progress made in developing flexible and efficient strategies for 
partitioned multi-disciplinary simulations, with a specific focus on Fluid-Structure Interaction 
(FSI) challenges. Key contributions include the implementation of advanced data transfer 
operators such as the Mortar Mapper and the exploration of robust coupling schemes that 
effectively integrate various discretization techniques, including Isogeometric B-Rep Analysis 
(IBRA) and Finite Element Methods (FEM). 

By embedding these methods within the Kratos-Multiphysics framework, the research ensures 
accessibility and extensibility for the broader scientific community. Notably, the proposed 
solution to the singularity problem when imposing strong boundary conditions on unfitted 
meshes addresses a critical gap in enabling partitioned simulations between unfitted domains, a 
significant step forward in multi-physics simulations. 

Future work will focus on publishing this new methodology for imposing strong boundary 
conditions on unfitted meshes. Additionally, research will be conducted to compare the 
performance of different mapping operators in the context of FSI simulations. These efforts aim 
to further refine the methodologies, improve computational efficiency, and expand their 
applicability to more complex engineering problems like the ones encountered in fields such as 
aerospace engineering, civil engineering or biomechanics. 

This work paves the way for more accurate and versatile simulations in multi-disciplinary fields, 
offering impactful advancements in computational engineering. 
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