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Executive summary  

This report outlines progress in advancing Isogeometric Analysis (IGA) within the immersed 

framework, focusing on its potential for solving dynamic problems. The work contributes to the 

objectives of the GECKO project under the MSCA network. It addresses key challenges regarding 

computational efficiency and accuracy, while fostering innovation in numerical simulation 

methodologies. 

After a brief introduction on the research background, some prerequisites and established 

research is presented, as well as a quick overview of the doctoral candidate’s learning path. 

Especially, emphasis is given on existing results that were recreated and explain the motivation 

of the research. On a simple immersed bar problem there is an analysis of trade-offs between 

computational efficiency and accuracy using consistent and lumped mass matrices, as well as α-

stabilization techniques. Later the methodology of the extended studies is presented. It includes 

novel research in bar and beam with harmonic excitation test examples for wave propagation 

accuracy studies. Additionally, extension of the work in 2D, including immersed square with its 

axis aligned or rotated with respect to the extended domain axis, in the latter case using a different 

approach by introducing the quadtree-based integration schemes. The available novel results for 

1D and 2D domains are demonstrated and discussed. 

This research underscores the potential of immersed IGA for dynamic simulations, demonstrating 

advancements in stability and efficiency while identifying areas for further research. Challenges, 

such as optimizing accuracy in higher-order problems and enhancing quadtree implementations 

for broader applications, remain key areas for investigation. For the near future, work will focus 

on completing studies for rotated domains and possibly introducing another quadtree example, 

and in the meantime addresing unresolved issues in accuracy analyses for beams and plates.  

This report marks substantial progress in immersed IGA methodologies, establishing a solid 

foundation for further innovation and practical applications. 
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Introduction 

This deliverable documents the progress achieved in research focused on immersed 

Isogeometric Analysis (IGA) for structural dynamics. The long-term aim is to address key 

challenges in the field such as the accuracy-efficiency dilemma, but at first the focus is on 

performing case studies on 1D and 2D immersed structural elements. 

The objectives of the deliverable include: 

• Establishing a research foundation 

• Developing novel methodologies 

• Presenting results  

This report is organised into five main chapters: 

1. Research background and learning path 

2. Methodology 

3. Results 

4. Work in progress and future work 

5. Conclusions 

This deliverable not only demonstrates the technical progress achieved but also underscores the 

academic and research development, which are fundamental goals of the MSCA network. 
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1 RESEARCH BACKGROUND AND LEARNING PATH 

This chapter briefly reviews key advancements in IGA, focusing on its evolution from basic 
principles to applications in Dynamics and ultimately Immersed Dynamics and Mass Lumping, 
and follows a parallel approach to the Doctoral Candidate’s personal incremental learning 
process, where foundational results were studied, recreated and extended step by step to the 
existing state of the art.  

This approach not only provides a background and sets the stage for the novel contributions 
presented in the next section but also demonstrates the step-by-step process that prepared the 
foundation required to achieve them, which indeed constitutes the first period of the research 
progress. This dual focus not only contextualizes the presented work for the reader but also 
demonstrates the problem-solving and skill-building that align with the goals of the MSCA 
network, fostering academic growth and research training. 

1.1 IGA Advantages 

Isogeometric analysis can provide numerous advantages compared to conventional Finite 

Element Analysis (FEA). Originally IGA was conceived as an idea of integrating Computer Aided 

Design (CAD) and FEA, providing efficiency by eliminating the meshing and re-meshing 

processes to significantly reduce the preparation time for simulations. Another strong motivation 

in its initial conception was the reduction or elimination of errors due to geometric approximation. 

[Hu05] 

These reasons were already compelling enough for the development of IGA, nevertheless even 

more benefits emerged afterwards, like the effect of higher-order inter-element continuity due to 

the smoothness of its basis functions, enabling superior approximation properties. The benefits 

of improved spectral accuracy over classical finite elements analysis (fig. 1) established IGA as a 

strong high-order competitor in the field of structural dynamics. [Co06] 

 

Figure 1: Improved spectral accuracy of IGA (NURBS – k-method) compared to FEM (p-method). 
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1.2 Immersed IGA for Dynamics 

The maximum eigenfrequency has a major role in explicit dynamics methods, since it is dictating 

the critical time step that ensures stability for the simulation. In immersed methods the presence 

of small cut elements can produce very large maximum eigenfrequencies, resulting in infinitesimal 

time steps to ensure stability, and thus to infeasible simulation times. 

1.2.1 Advantages in efficiency and stability 

Immersed IGA is an alternative to standard FEA that could provide stability and efficiency, 

leveraging the effect of higher-order inter-element continuity in conjunction with either a lumped 

mass matrix or by introducing α-stabilization in the context of Finite Cell Method, along with a 

Consistent Mass Matrix. 

 

Figure 2: IGA problem setup with B-spline basis functions for an immersed 1D structural element 
(bar/beam) of length l embedded in an extended domain [0, L] with fictitious domain size ζ on each side. 

As shown originally in [Le20], Isogeometric B-spline (IGA) discretizations in an immersed 

framework and in combination with mass lumping can lead to a greatly reduced largest eigenvalue 

(see fig. 3), while for standard FEM based on Lagrange polynomials the largest eigenvalue 

diverges as the support of an element approaches zero. 

 

Figure 3: Restricted largest eigenvalues (for p>1) independently of the fictitious domain size ζ in a bar, for 
computations with a lumped mass matrix. 

For immersed IGA discretization, when consistent mass matrix is utilized and lumping is avoided, 

the largest eigenfrequencies for different immersion configurations follow the trend as in the 

standard FEA where they diverge to infinity as the support of the element becomes smaller (see 

fig. 4 left). In [Ra24] it is demonstrated that if a consistent mass matrix is used along with the 

implementation of α-stabilization, then in the immersed bar example the largest eigenvalue is also 
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bounded (see fig. 4 right), although in smaller proportion compared to the Lumped Mass Matrix 

case. 

 

Figure 4: Largest eigenvalue over fictitious domain size ζ in a bar, for computations without stabilization (left) 
and with stabilization (right) (bounding of the eigenvalues) and a consistent mass matrix. 

1.2.2 Limitations in Accuracy 

While the bounding of the maximum eigenfrequency due to mass lumping has a very positive 

effect in the efficiency of the simulation allowing larger time steps, on the other hand it introduces 

limitations in accuracy, which depending on the application could be crucial. 

This time, the quantity under review is the period error, since in the harmonic vibration the 

structure is supposed to return in its exact position after a period. Hence by measuring this L2 

error we have an indication of the accuracy of the current implementation, and we do that for 

several immersed configurations as well as the boundary fitted as an extreme case (ζ=0), in a 

similar way we performed the largest eigenvalue study earlier. 

In figs. 5, 6, the results of the L2 error after a period, along with the critical time step of a gaussian 

pulse wave propagation problem are presented in the same bar setup that we used in the previous 

chapter to demonstrate the improvement in efficiency and stability.  

 

Figure 5: Error after a period and critical time step for a gaussian pulse wave propagation problem in a bar 
with a consistent mass matrix. 
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Figure 6: Error after a period and critical time step for a gaussian pulse wave propagation problem in a bar 
with a lumped mass matrix. 

We can observe that although the critical time step is increased by transitioning to a lumped mass 

matrix (fig. 6) allowing faster simulation times, there is the negative consequence of the error 

increasing significantly, leading to results with limited accuracy compared to equivalent results 

obtained with a consistent mass matrix (fig. 5). 

 

1.3 Learning path and results recreation 

Studying and implementing IGA problems started in a similar sequence as presented above, from 

the basic and general to the specific and state of the art. The first steps emphasized on 

fundamental understanding of IGA and implementation of corresponding problem solving through 

coding, later the focus was on structural vibrations and so results from [Co06] where also 

recreated.  

Finally, moving to the immersed IGA approach for structural dynamics and mass lumping effects 

or stabilization along with a consistent mass matrix which are demonstrated above. After getting 

an understanding of those matters, doctoral candidate managed to create algorithmic 

implementations that reproduced the results of [Le20] and [Ra24] and are presented in the 

previous pages. That process was the optimal way to engage progressively from the 

fundamentals to the advanced, building up specific knowledge and skills. The next step was to 

extend the promising studies of [Ra24] and produce novel research results.  
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2 METHODOLOGY 

2.1 Bar 

The accuracy studies performed in [Ra24] employed a wave propagation example of a gaussian 

pulse (as presented in fig. 7) while the additional novel equivalent studies a harmonic propagation 

(fig. 8).  

 

Figure 7: Gaussian pulse initial condition for wave propagation problem in immersed bar 

 

 

Figure 8: Harmonic vibration initial condition for wave propagation problem in immersed bar 
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2.2 Bernoulli – Euler beam 

The current case study is examining the effects of transitioning from 2nd to 4th order Partial 

Differential Equation (PDE). The code implementation and problem setup are similar to the bar 

problem as presented in chapter 1. The harmonic propagation initial condition can be seen in fig. 

9. 

 

Figure 9: Harmonic vibration initial condition for wave propagation problem in immersed beam 

2.3 Extension to 2D (Membrane and Poisson - Kirchhoff 

Plate) 

2.3.1 Immersed square with aligned axis to the extended 

domain 

The next step in this research direction was the extension of the 1D results to 2D square elements. 

As a first approach the new problem setup is very similar to the simpler one-dimensional since 

the immersed and extended domains have their axis aligned (fig. 10). In this way, the integration 

of cut elements can be exact by splitting them on the domain border into 4 sub elements and 

integrating only those inside the immersed domain, following the same approach implemented in 

the one-dimensional domain where each cut element is split in two at the exact immersion border. 

Specifically, the equivalent of the bar is the membrane (2nd order PDE) and accordingly for the 

Bernoulli – Euler beam the Poisson – Kirchhoff plate (4th order PDE). 
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Figure 10: Extension to 2D square problems with axis aligned between immersed and extended domains 

To perform the accuracy studies a wave propagation example with harmonic excitation initial 

conditions was utilized (fig. 11). 

 

Figure 11: Harmonic vibration initial condition for wave propagation problem in a squared membrane with 
axis aligned between immersed and extended domains 
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2.3.2 Immersed square problem with rotated axis to the 

extended domain 

A following extension that helps to generalise more the examples is the modification of the 

immersed square by rotating it, in this way the immersed and extended domains don’t have their 

axis aligned anymore (fig. 12), which changes significantly the process of the overall numerical 

integration implementation.  

 

Figure 12: Extension to 2D square problems with rotated axis between immersed and extended domains. 

The quadtree scheme is employed to tackle that challenge as a first approach (fig 13). This 

implementation could potentially deal with any 2D shape ensuring there is an algorithm providing 

the information of points being inside or outside the immersed domain.  

Each element is divided in four equal sub-elements, and this can be selectively repeated in each 

(sub)-element for several iterations. Integration takes places according to the indicator value 

assigned accordingly either as 1 or alpha (alpha equal to either zero or a small tolerance value 

for stabilization), and in principle following the concept of the Finite Cell Method as previously.  
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Figure 13: Implementation of a quadtree integration approach for the rotated square problem 

When the maximum level of iterations is reached then the smallest sub-element can be integrated 

per Gauss point according to their position (inside or outside the immersed domain) as is 

showcased in fig. 14. 

 

Figure 14: Detail of quadtree quadrature integration per Gauss point in cut elements 
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3 RESULTS 

In this chapter the originally created results are introduced, providing an extension of those 

displayed in the first chapter. As a general comment, the behaviour follows the same trend as the 

results presented in chapter 1, although there may be some small differentiations and additionally 

some results not yet interpreted completely. 

3.1 1D Domain 

3.1.1 Bar 

Following the same approach to the recreated results introduced previously, by quantifying the 

L2 error after a wave propagation period, we can examine the accuracy, since the structure is 

supposed to return in its exact position after a period in the chosen examples. The results 

obtained by employing a harmonic vibration for the bar are presented below. 

 

Figure 15: Error after a period and critical time step for a harmonic wave propagation problem in a bar with 
a consistent mass matrix 

Again, we observe the same trend compared to the gaussian pulse results above and the same 

transformation when transitioning to a lumped mass matrix. 

 

Figure 16: Error after a period and critical time step for a harmonic wave propagation problem in a bar with 
a lumped mass matrix. 

Interestingly, we observe that for this harmonic vibration example, the effects of α-stabilization 

diminish significantly the accuracy. 
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3.1.2 Bernoulli – Euler beam 

An extension of the bar results to 4th order partial differential equation problems was presented in 

[Pa24] employing an immersed beam setup with a harmonic excitation wave propagation 

example, as presented in the previous chapter. 

We can observe the effects of α-stabilization in conjunction to a consistent mass or the 

introduction of the mass lumping to the maximum eigenvalues for several immersion scenarios. 

 

Figure 17: Largest eigenvalue over fictitious domain size ζ in a beam, for computations without 
stabilization (left) and with stabilization (right) (bounding of the eigenvalues) and a consistent mass matrix. 

The bounding behavior is present and mimics the effects observed in the bar problem in both 

cases. 

 

Figure 18: Reduced largest eigenvalue (for p>3) independently of the fictitious domain size ζ in a beam, for 
computations with a lumped mass matrix. 

Regarding the accuracy study with consistent mass (fig. 19), the results obtained are not exactly 

the expected and there is still some pending work in progress to comprehend them. 
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Figure 19: Error after a period and critical time step for a harmonic wave propagation problem in a beam 
with a consistent mass matrix 

As we can observe the error for the consistent mass matrix case is not following the time step 

trajectory as already presented in the bar example, or later will be presented for the membrane 

study. 

On the contrary, lumped mass results seem to behave in a more predictable manner. 

 

Figure 20: Error after a period and critical time step for a harmonic wave propagation problem in a bar with 
a lumped mass matrix. 

3.2 2D Domain 

As discussed previously a research goal of the current PhD work is to extend and further enrich 

the 1D studies to their equivalent to 2D example problems. Albeit there is work in progress, the 

completed studies are demonstrated below. The available findings are limited to the aligned axis 

test case, and for the Poisson-Kirchhoff plate are limited only to the largest eigenvalue study. 

3.2.1 Membrane 

The results of the membrane are matching the bar results as we can observe for the largest 

eigenvalue and wave propagation accuracy studies following.  
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Figure 21: Largest eigenvalue over fictitious domain size ζ in a membrane, for computations without 
stabilization (left) and with stabilization (right) (bounding of the eigenvalues) and a consistent mass matrix. 

The bounding of the maximum eigenfrequency is taking place with the introduction of α-

stabilization (fig. 21) as well as with mass lumping in a more prominent way (fig. 22). 

 

Figure 22: Reduced largest eigenvalue (for p>1) independently of the fictitious domain size ζ in a 
membrane, for computations with a lumped mass matrix. 

The results of the accuracy study employing the wave propagation with harmonic excitation 

example are shown in fig. 23 and 24, utilizing a consistent and lumped mass matrix accordingly.  

 

Figure 23: Error after a period and critical time step for a harmonic wave propagation problem in a membrane 
with a consistent mass matrix. 

The findings are comparable to those of the bar applying the harmonic vibration example, and 

additionally we can comment that the reduction of accuracy due to lumping is more prominent. 
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Figure 24: Error after a period and critical time step for a harmonic wave propagation problem in a membrane 
with a lumped mass matrix. 

3.2.2 Poisson – Kirchhoff plate 

The current element represents the equivalent of the Bernoulli – Euler beam in two dimensions. 

Both the consistent and lumped mass versions of the plate show great similarities to the 

performance of the maximum eigenfrequencies studies, along with their bounding as shown 

already for the beam. 

 

Figure 25: Largest eigenvalue over fictitious domain size ζ in a Poisson - Kirchhoff plate, for computations 
without stabilization (left) and with stabilization (right) (bounding of the eigenvalues) and a consistent mass 
matrix. 

 

Figure 26: Reduced largest eigenvalue (for p>3) independently of the fictitious domain size ζ in a Poisson - 
Kirchhoff plate, for computations with a lumped mass matrix. 
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4 WORK IN PROGRESS AND FUTURE WORK 

Currently research activity is focused on completing the studies for the aligned axis square 

domains likewise for the plate and experiment with several setups in the rotated immersed square 

membrane and plate.  

The transition from the immersed square with aligned axis to a new approach where the quadtree 

scheme is employed is a step forward that guarantees some continuity and relevance to the 

previous results and an attempt to benchmark the new approach with the existing simpler (aligned 

axis) implementation. In this way the new more complex approach can be gradually implemented 

and compared, employing the quadtree approach to solve a test case including a non-rotated 

square, since this example is also solved with the simpler implementation. 

Another example could be also employed, for example a circular 2D domain instead of a square 

for which analytic solutions are also available. 

The same approach and examples could be implemented for the plate after the membrane results 

are complete, and the methodology works. Still the accuracy results of the Bernoulli – Euler beam 

need to be explained or the methodology to be inspected again for errors, since the current 

findings are not yet interpreted. 

After the conclusion and summing up of all these findings, hopefully a journal publication could 

be composed, along with dissemination of the results to several conferences and events. 
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5 CONCLUSIONS  

This technical report presents a comprehensive overview of the research progress, 
methodologies, as well as results achieved during the first period of this doctoral work.  

Some key achivements include: 

1. Establishing a strong understanding of IGA principles, validated and enriched through 
recreation of foundational results, as well as extension to immersed approach. 

2. Quantifying accuracy and stability trade-offs in dynamics simulations, utilizing wave 
propagation test cases with both Gaussian pulse and harmonic excitation initial conditions. 

3. Extending studies to the 2D domain as well as 4th order PDEs, along with more advanced 
configurations such as the the quadtree implementation with potential to deal with complex 
geometries. 

Some of the encountered challenges are actually the open topics currently and relate to the 

accuracy limitations introduced by mass lumping, the interpretation of unexpected findings in the 

beam accuracy studies and the wave propagation problem setup in plate. 

The plan for future work is to resolve the issues and completing the 2D studies, as well as prepare 

findings for journal publication. 

The current work has established a robust foundation for extending the state of the art in 

immersed IGA for dynamics and the next steps aim to redifine it by adressing unresolved 

challenges. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 
 
 

DCX - NAME   Technical Report     Page 25 of 25 

  

6 REFERENCES 

1. [Hu05] T.J.R. Hughes, J. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite 
elements, NURBS, exact geometry, and mesh refinement. Computer Methods in 
Applied Mechanics and Engineering, 2005, 194, pp.4135–4195. 

2. [Co06] J. Cottrell, R. Reali, Y. Bazilevs, T.J.R. Hughes. Isogeometric analysis of 
structural vibrations. Computer Methods in Applied Mechanics and Engineering, 
2006, 195, pp.5257-5296.  

3. [Le20] Leidinger L., “Explicit Isogeometric B-Rep Analysis for Nonlinear Dynamic 

Crash Simulations”, Dissertation, Technical University of Munich, 2020 

4. [Ra24] L. Radtke, M. Torre, T. J. Hughes, A. Düster, G. Sangalli, and A. Reali, “An 

analysis of high order fem and iga for explicit dynamics: Mass lumping and 
immersed boundaries,” International Journal for Numerical Methods in 
Engineering, vol. 125, no. 16, p. e7499, 2024 

5. [Pa24] Pagonas, A., Radtke, L., Torre, M., Hughes, T. J. R., Düster, A., Sangalli, 
G., and Reali, A., ”Immersed IGA and mass lumping for explicit dynamics of 1D 
structural elements”, Proceedings of 31st ISMA Conference on Noise and Vibration 
Engineering, 2024 

 

 

 

 

 

 

 

 

 


	Executive summary
	Table of contents
	List of figures
	List of tables
	List of abbreviations
	Introduction
	1 RESEARCH BACKGROUND AND LEARNING PATH
	1.1 IGA Advantages
	1.2 Immersed IGA for Dynamics
	1.2.1 Advantages in efficiency and stability
	1.2.2 Limitations in Accuracy
	1.3 Learning path and results recreation
	2 METHODOLOGY
	2.1 Bar
	2.2 Bernoulli – Euler beam
	2.3 Extension to 2D (Membrane and Poisson - Kirchhoff Plate)
	2.3.1 Immersed square with aligned axis to the extended domain
	2.3.2 Immersed square problem with rotated axis to the extended domain
	3 RESULTS
	3.1 1D Domain
	3.1.1 Bar
	3.1.2 Bernoulli – Euler beam
	3.2 2D Domain
	3.2.1 Membrane
	3.2.2 Poisson – Kirchhoff plate
	4 WORK IN PROGRESS AND FUTURE WORK
	5 CONCLUSIONS
	6 REFERENCES


