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Executive summary  

Numerical methods like the Boundary Element Method (BEM) are often employed predict the 

acoustic performance of components. However, since within such techniques the generation of a 

mesh is required, the actual geometry is replaced by a mere approximation, thus reducing the 

accuracy of predictions. To ensure geometric exactness, isogeometric analysis (IGA) which uses 

Non-Uniform Rational B-splines (NURBS) to represent the geometry, are used in combination 

with the BEM (IGABEM). Nevertheless, employing the BEM within the IGA framework (IGABEM) 

induces a high computational cost, due to the dense and frequency-dependent nature of the BEM 

systems. In that context, this report presents model order reduction strategies for the acoustic 

boundary element method within the IGA framework to speed-up the computational time and 

alleviate the memory costs. 
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Introduction 

Due to increasing regulation regarding noise radiation and vibration, the acoustic performance of 

components have become a key factor in the product design cycle. Computer-aided design (CAD) 

is usually the first step in the virtual product design cycle to digitize the geometrical features of a 

product. For the prediction of the NVH characteristics of the product, traditional element-based 

methods are used and require the conversion of the CAD geometry into an analysis-suitable 

format. To obtain an analysis model, the CAD geometry is discretized by replacing its geometry 

with a piecewise polynomial approximation. Usually, low order polynomial approximations are 

used for this. This process is called meshing. Generating a suitable mesh for the considered 

geometry can be a complex process for design engineers and introduces some approximation 

errors and inaccuracies. Furthermore, any design change of the geometry requires another 

meshing process resulting into analysing a new model. For problems of industrial complexity, 

where the analysis steps are integrated in an optimization process, this process can drastically 

slow down the product development cycle. According to Hughes et al. [1] the procedure can take 

up to 80% of the overall analysis time.      

To alleviate this shortcoming and ensure geometric exactness, Hughes et al. [1] introduced 

Isogeometric Analysis (IGA) in 2005 which aims to bridge the gap between CAD and computer 

aided engineering (CAE) by integrating the Finite-Element Analysis (FEA) and CAD within one 

workflow. Instead of utilizing low-order polynomial shape functions for the discretization process 

in the traditional FEA, IGA adopts the concept of using identical basis functions for computation 

and for CAD operations [2]. In recent years, extensive research has been conducted to apply IGA 

in various engineering domains such as structural mechanics [3], contact mechanics [4], 

computational fluid dynamics [5], FSI-problems [6] and acoustics [7,8,9]. For the implementation 

of IGA, different types of Spline functions like T-Splines, Non-Uniform Rational B-Splines 

(NURBS) have been used to represent the geometry in engineering designs. 

In the research of computational acoustics, Simpson et al. [7] combined the direct collocational 

Boundary Element Method (BEM) approach with the IGA methodology which utilizes T-Splines to 

solve linear time-harmonic acoustic problems. In comparison to the Finite Element Method (FEM), 

employing the BEM is well suited for modelling unbounded acoustic problems. The BEM 

inherently satisfies the Sommerfeld radiation condition and deals with a smaller number of 

Degrees of Freedom (DoFs) due to the need of only discretizing the boundary surface instead of 

the volume. The direct collocational BEM within the IGA framework, however, is limited to solve 

closed boundary surfaces only. Therefore enabling the solution of industrial applications to solve 

combined exterior/interior acoustic problems, e.g. open boundary problems, in 2014 Coox et al. 

[9] developed an indirect variational formulation BEM in conjunction with IGA (IGABEM) based 

on NURBS. 

For large-scale industrial applications where the analysed geometry is complex and a frequency 

analysis over a specific range is needed, numerical methods reach their computational limits. 

Especially the BEM induces a high computational cost in comparison to FEM due to the dense 

and frequency-dependent nature of its corresponding systems [10]. To alleviate this 

computational burden, Model Order Reduction (MOR) techniques have been utilized to find low-

order models while maintaining a good approximation of the full-order model (FOM) over a desired 

frequency range. Proper orthogonal decomposition (POD) [11], the reduced basis method (RBM) 

[12] and Krylov moment matching [13] are common MOR techniques utilized in recent research. 

In the field of acoustics,  MOR techniques have been employed in the context of vibro-acoustics 

using FEM. Van de Walle et al. [14] and Cai et al. [15], for instance, use Krylov moment matching 

which matches the first moments of the low order polynomials system in order to preserve stability 

in the time domain.  
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For the BEM, the application of standard MOR techniques in a straightforward manner as in FEM 

is hindered due to the frequency dependency of the BEM systems, leading to a tedious procedure 

to create a representative projection basis. In addition, every parameter value change, i.e. 

frequency change, requires the creation of a new projection basis, and hence diminishes the 

purpose of MOR. Recently, different techniques such as Krylov subspaces recycling have been 

employed to accelerate the acoustic analyses using BEM [16]. 

In this research, an automatic MOR scheme based on Krylov subspaces recycling [17] is applied 

in conjunction with IGABEM to solve acoustic problems. The automatic MOR method automates 

the selection of Krylov subspaces to be recycled and creates a projection basis which sufficiently 

approximates the solution of the FOM. The projection basis is used in combination with a 

Chebyshev polynomial approximation to create a reduced order model (ROM), thus alleviating 

the computational burden. 
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1 Model Order Reduction of acoustic isogeometric 

BEM systems  

1.1 Acoustic Fundamentals  

To describe the steady-state dynamic behaviour in the acoustic domain, a differential equation is 

needed. The governing differential equation for linear acoustic problems is the Helmholtz-

equation which is used to compute the sound pressure 𝑝(𝒓) in the acoustic domain 

∆ 𝑝(𝒓) + 𝑘2𝑝(𝒓) =  −𝑗𝜌𝜔𝑞𝛿(𝒓, 𝒓𝒒), 𝑟 ∈ Ω 

where 𝑘 = 𝜔/𝑐 is the acoustic wavenumber, 𝜔 is the angular frequency, 𝑐 is the speed of sound, 

𝑞 is the strength of an acoustic volume velocity source at a position 𝒓𝒒. The mathematical terms 

used above are as follow: 𝑗2 =  −1 is the imaginary unit, 𝛿(𝑖, 𝑗) denotes the Dirac-delta function, 

∆ =  ∇2 =  ∇  ∙   ∇ =
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2  +
𝜕2

𝜕𝑧2 denotes the Laplace operator.  

The indirect variational boundary element method is based on the indirect boundary integral 

formulation which solves the pressure difference and normal pressure gradient between two sides 

of the boundary instead of directly solving for the acoustic pressure 𝑝(𝒓). The difference in 

pressure between two sides is called double layer potential 𝜇(𝒓𝑓) and the single layer potential 

𝜎(𝒓𝒇) is defined as the difference of the normal pressure gradient between two sides of the 

boundary Γ [21]. 

To compute the single and double layer potential, 𝜎(𝒓𝑓) and 𝜇(𝒓𝑓) respectively, on the boundary 

surface, the boundary conditions are enforced using the indirect boundary integral formulation, 

leading to three integral equations. By applying a weighted residual formulation of these 

equations, a variational formulation can be obtained by  

∀ (𝛿𝜎, 𝛿𝜇): ∫ 𝑅𝑝(𝜎, 𝜇)𝛿𝜎𝑑Γ

Γ𝑝

+ ∫ 𝑅𝑣(𝜎, 𝜇)𝛿𝜇𝑑Γ
Γ𝑣

+ ∫ 𝑅𝑍(𝜎, 𝜇)𝛿𝜇𝑑Γ
Γ𝑍

= 0, 

where 𝑅𝑝(𝜎, 𝜇), 𝑅𝑣(𝜎, 𝜇), 𝑅𝑍(𝜎, 𝜇) are the boundary residuals for the Dirichlet, Neumann and Robin 

boundaries, respectively. The expressions are omitted for the sake of brevity and can be found in 

[]. By discretizing the variational formulation numerically, a symmetric system of equations can 

be obtained in the form of  

𝑨(𝜔)𝒙(𝜔) = 𝒃(𝜔), 𝜔 ∈ Ψ, 

where 𝑨: Ψ → ℂ𝑁×𝑁 is the symmetric system matrix and 𝒃, 𝒙: Ψ →  ℂ𝑁 are the force vector resulting 

from the imposed variables and the vector of unknown potentials, 𝜎(𝒓𝑓) and 𝜇(𝒓𝑓), respectively. 

1.2 AKR MOR in IGA-BEM 

The performance of the presented method is investigated and verified by an analytical solution in 

this section. 

In Figure 1 (a) a sphere with a radius r = 0.25 m is illustrated. A plane wave with an amplitude of 

1.0 is propagating through an unbounded air volume (𝜌0= 1.225 𝑘𝑔/𝑚3 , c = 340 𝑚/𝑠) and is 

impinging from the left on a rigid sphere (𝑣̅𝑛  = 0 𝑚/𝑠 for the entire boundary surface). The acoustic 

pressure is studied in a frequency range from 1 to 1000 Hz with a step size of 1 Hz leading to a 
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grid of values Φ ∈ Ψ with |Φ| = 1000. The sphere consists of 6 identical conforming, biquartic 

patches and is modeled with NURBS polynomial of degree 4 which results to a total of 726 DoFs. 

The acoustic pressure 𝒑(𝒓) is measured at 50 different positions ranging from r to 5r. 

 

 

Figure 1: (a) Plane wave scattering problem by a rigid sphere; (b) relative error of scattering 

pressure 
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To validate the FOM from the numerical analysis using IGABEM for the plane wave scattering 

problem by a rigid sphere, the average relative error of the acoustic pressures with respect to the 

reference solution is investigated in Figure 1 (b). The reference solution refers to the analytical 

solution of the plane wave scattering problem by a rigid sphere which can be computed as in [19]. 

The L2 relative error norm on the radiated pressure field 𝒑(𝒓) is computed. 

Throughout the analysed frequency range the average relative error is below 10−2, showing that 

IGABEM is accurate. For low frequencies up to 50 Hz a high increase of relative error is seen 

which can be associated to the system being numerically ill-conditioned. 

For the reduced order model (ROM) the frequency sweep is performed by employing the AKR 

method in combination with the Chebyshev polynomial approximation. The projection basis is 

constructed in the offline phase. Following, the procedure of [19] the maximum distance of the 

sphere 𝑑𝑚𝑎𝑥 := 0.5 m and a degree ℳ := 25 is considered to provide sufficient accuracy. The 

normalized residual is used as an error estimator to check the accuracy of the ROM with regards 

to the FOM. The residual threshold is set at 𝑟𝑡𝑜𝑙 ∶= 10−2. The SPL from the FOM and ROM in 

Figure 2 show no differences, implying that the considered threshold 𝑟𝑡𝑜𝑙 is sufficient. By 

inspecting the normalized residual for the defined frequency range, the residual is below the 

predefined tolerance of 10−2. To generate the projection basis 𝑉𝐴𝐾𝑅, the AKR algorithm only 

requires 2 partial solves and 3 full assemblies. The AKR algorithm produces a basis spanning a 

subspace of 62 dimensions leading to more drastic reductions compared to the FOM with a 

dimension of 726. 

 

Figure 2: (a) Sound pressure level at an evaluated point; (b) Normalized residual error of the 

double layer potential (ROM); (c) Configuration for AKR with 𝑥(𝜔), 𝜔 ∈ 𝛺 
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Besides inspecting the accuracy of the ROM, it is also important to analyze the computation cost 

of the IGABEM, the Chebyshev polynomial approximation of the IGABEM system (Cheb-

IGABEM) and the ROM induced by the MOR method. 

Comparing the computational cost in the offline phase in Table 1, shows that both the ROM and 

the Cheb-IGABEM require similar computational cost, whereas the IGABEM has no offline cost. 

The greatest cost in the offline phase is related to the construction of the frequency-independent 

parameters 𝑻𝑖 and 𝒒𝑖.  

Inspecting the total wall-clock time, shows that the largest speed-up for the Cheb-IGABEM and 

ROM is related to the assembly of the procedure. For both the ROM and Cheb-IGABEM the 

computational time is accelerated by avoiding the assembly procedure for every frequency. The 

ROM is slightly superior than the Cheb-IGABEM in terms of total cost due to the small size of the 

system and hence cheaper assembly procedure. 

In terms of storage the ROM outperforms the Cheb-IGABEM and the IGABEM. For the ROM only 

the reduced frequency independent parameter 𝑻𝑖,𝑟𝑒𝑑 needs to be stored, whereas for Cheb-

IGABEM the initial frequency independent parameter 𝑻𝑖 has to be stored to solve for the 

interested frequency range. For large-scale problems the reduction of computational time and 

memory is more pronounced for the AKR-reduced ROM. 

Operation Cheb-IGABEM IGABEM ROM 

Offline Cost 

Construction of 

projection basis 

- - 17 min 

Construction of 

Chebyshev 

polynomial 

80 min - 62 min 

Total wall-clock time 91 min 63h 36 min 81 min 

Memory 150 MB 5.8 MB 2.1 MB 

Table 1: Computational cost for a frequency sweep of the plane wave scattering problem 
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2 CONCLUSIONS  

In this research, a model order reduction technique was applied for acoustic IGABEM using 

NURBS shape functions. The IGA-BEM is first verified by an analytical solution of the plane wave 

scattering problem by a rigid sphere. Afterwards, based on the FOM of the IGA-BEM, the 

presented technique uses Chebyshev polynomials to express the IGA-BEM system in an affine 

expression and a Galerkin projection is deployed for the order reduction of the resulting affine 

system. The reduction basis is created by leveraging the Krylov subspaces recycling of [18]. The 

combination of methods  is analysed in terms of accuracy, computational cost and memory usage 

and comparisons with the baseline techniques are performed 
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