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Executive summary  

This document presents the integration of the Shifted Boundary Method (SBM) into the framework 

of Isogeometric Analysis (IGA), creating a robust and efficient approach for solving structural and 

contact mechanics problems. The synergy between SBM and IGA addresses longstanding 

challenges in computational mechanics, particularly those related to handling complex 

geometries and accurately simulating contact interactions. 

The Shifted Boundary Method enhances the flexibility of computational frameworks by shifting 

boundary conditions to surrogate boundaries, avoiding the need for watertight meshes and 

simplifying preprocessing. When combined with IGA, which uses smooth spline-based basis 

functions like B-splines and NURBS, this approach ensures high continuity and exact geometric 

representation. These features make the framework particularly effective for intricate geometries 

and scenarios where precision is critical, such as contact mechanics. 

In the context of contact mechanics, a novel penalty-free Nitsche formulation has been developed. 

This method simplifies the enforcement of contact constraints, eliminating the need for additional 

variables like Lagrange multipliers or penalty parameters, while maintaining accuracy and 

numerical stability. The approach has been validated through classical benchmarks such as the 

Hertz contact problem and patch test, demonstrating its ability to handle large deformations and 

complex contact conditions with precision. Key achievements include: 

1. Successful integration of SBM and IGA for complex geometries, preserving high 

accuracy and reducing computational overhead. 

2. Development of a penalty-free Nitsche formulation for contact mechanics, simplifying 

implementation and ensuring robust constraint enforcement. 

3. Validation of the framework through benchmark problems, highlighting its accuracy, 

stability, and efficiency compared to traditional FEM. 

Looking forward, this framework is well-positioned to extend to immersed contact mechanics, 

enabling the simulation of even more complex systems. The flexibility of SBM combined with the 

precision of IGA opens new possibilities for tackling challenging multi-scale and large-deformation 

problems in various engineering fields. 

In conclusion, the integration of SBM and IGA represents a transformative step in computational 

mechanics, delivering a powerful tool that combines theoretical innovation with practical 

applicability to meet the demands of modern engineering challenges. 
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List of abbreviations  

ALM Augmented Langrangian Multiplier method 

FEM Finite Element Method 

IGA IsoGeometric Analysis  

LM Lagrangian Multiplier method  

SBM  Shifted Boundary Method 
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Introduction 

Isogeometric Analysis (IGA) has revolutionized computational mechanics by bridging the gap 

between Computer-Aided Design (CAD) and numerical simulations, enabling exact geometric 

representation and high continuity across element interfaces. This integration is particularly 

advantageous for applications such as contact mechanics, where precision in stress distribution 

and deformation modeling is critical. IGA employs smooth basis functions like B-splines and Non-

Uniform Rational B-Splines (NURBS), ensuring geometric fidelity and reducing the degrees of 

freedom required for accurate simulations compared to traditional Finite Element Methods (FEM). 

Despite these advantages, traditional boundary-fitted IGA implementations face significant 

challenges when applied to complex geometries. The need for watertight models and the 

computational cost of handling trimmed or discontinuous surfaces can hinder efficiency. To 

address these challenges, the Shifted Boundary Method (SBM) has emerged as a 

complementary technique. By shifting boundary conditions to surrogate boundaries and modifying 

them using Taylor expansions, SBM avoids issues like small cut cells and simplifies 

preprocessing. Its integration into the IGA framework enhances flexibility in handling intricate 

geometries and boundary conditions, particularly for immersed scenarios. 

This document presents the integration of SBM within IGA, with a particular focus on its 

application to contact mechanics. The combination of SBM and IGA addresses challenges related 

to boundary imposition and geometric complexity, while also advancing contact mechanics 

formulations through a penalty-free Nitsche approach. Benchmarks such as the patch test, Hertz 

contact problem, and punch test validate the robustness, efficiency, and accuracy of these 

methods. By balancing SBM's versatility in geometry handling with IGA’s precision and 

computational advantages, this work highlights a comprehensive framework for tackling complex 

structural and contact mechanics problems. 
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1. The Shifted Boundary Method in IGA 

Isogeometric Analysis (IGA) has emerged as a transformative approach in computational 

mechanics, bridging the longstanding gap between Computer-Aided Design (CAD) and 

Computer-Aided Engineering (CAE). Initially proposed by Hughes et al. [1, 2, 3, 4, 5], IGA delivers 

precise geometric representations and high levels of continuity at element interfaces [6], making 

it especially effective for accurately modeling intricate geometries [7, 8, 9]. The foundation of IGA 

lies in employing B-Splines and NURBS basis functions, which provide smooth transitions and 

enable localized refinements, ultimately enhancing the reliability and precision of simulations [10, 

11]. 

Despite its strengths, traditional boundary-fitted implementations of IGA encounter notable 

hurdles with complex geometries. These include the need for watertight models and the 

computational overhead of managing trimmed or discontinuous surfaces [12, 13]. To address 

these challenges, immersed boundary techniques, such as the Finite Cell Method (FCM) [14, 15] 

and Isogeometric Boundary Representation Analysis (IBRA) [16, 17, 18, 19, 20], have been 

introduced. These methods bypass the need for strict boundary conformity by working with non-

boundary-fitted meshes. However, a persistent issue in these approaches is the handling of small 

cut cells [21, 22], which can degrade computational performance and complicate solver 

convergence. 

The Shifted Boundary Method (SBM) [23,24], originally developed in the context of the Finite 

Element Method (FEM), provides an innovative approach to overcoming challenges associated 

with traditional boundary-fitted methods. By shifting boundary conditions to a surrogate boundary 

and leveraging Taylor expansions for accurate boundary value modifications, SBM effectively 

eliminates the issues caused by small cut-cells. This simplification not only maintains optimal 

accuracy but also reduces the complexity of mesh generation and refinement. Applications of 

SBM in FEM have already demonstrated its efficacy in elasticity and incompressible fluid 

dynamics [25,26,27,28]. 

1.1 A brief comparison: IGA and FEM 

A key step in advancing the use of IGA was the implementation of a general body-fitted problem, 

where a flexible, nonlinear mapping between the parameter and physical spaces was developed. 

This mapping leverages IGA’s inherent capability to describe CAD geometries perfectly, ensuring 

precise simulation of even the most complex domains. 

● Advantages of IGA over FEM in Body-Fitted Scenarios 

Comparative studies between IGA and FEM have revealed several advantages of IGA in body-

fitted scenarios: 

1. Reduced Degrees of Freedom (DOFs): 

IGA requires fewer DOFs to achieve the same error level compared to FEM. This is due 

to the higher-order continuity of NURBS, which reduces the number of elements and 

control points needed for accurate approximations. 

2. Exact Geometry Representation: 

Unlike FEM, where mesh generation can introduce geometric inaccuracies, IGA ensures 

that the computational domain is an exact replica of the CAD model (Figure 1). This 

exactness is particularly beneficial for problems where geometric fidelity is critical, such 

as those involving contact mechanics. 
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3. Simplified Refinement: 

Refinement in IGA can be achieved without altering the underlying geometry, making it 

more straightforward to adapt the computational model to different levels of precision. 

4. Higher Convergence Velocity: 

Both FEM and IGA exhibit similar convergence orders when using the same polynomial 

degree. However, IGA’s ability to easily increase the order of basis functions without 

remeshing provides a significant edge. Higher-order basis functions lead to enhanced 

convergence rates, enabling IGA to achieve desired accuracy more efficiently and lower 

numbers of degrees of freedom (Figure 2). 

■ Figure 1. Comparison of IGA and FEM discretizations. 

■ Figure 2. Comparison of IGA and FEM convergence and DOFs utilization. 
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1.2 The Shifted Boundary Method 

The Shifted Boundary Method (SBM) offers a flexible framework to address challenges in 

numerical integration over complex domains, including contact mechanics. As outlined in [29], 

SBM shifts the imposition of boundary conditions from the true boundary Γ to a surrogate 

boundary 𝛤ℎ , composed of edges of a computational grid. 

Boundary conditions are modified using Taylor expansions, ensuring optimal convergence rates. 

This approach avoids challenges associated with small cut cells and simplifies numerical 

integration, making it particularly suited for embedded methods and large deformation problems. 

In this context, the SBM complements Isogeometric Analysis (IGA) by leveraging exact geometry 

descriptions and avoiding trimmed knot spans. This synergy improves the representation of 

physical geometries and enhances computational efficiency. 

 

Figure 3:  SBM main characteristics. 

The SBM for IGA has been implemented inside the Kratos Multiphysics framework 

(KratosMultiphycsGithub) to handle 2D fluid and structural mechanics problems with complex 

geometries. 

The SBM implementation preserves the optimal convergence of body-fitted cases under Dirichlet 

boundary conditions, though it experiences a one-order reduction in convergence for Neumann 

(load) conditions. This functionality has also been extended to 3D problems, broadening its 

applicability (Figure ). 

https://github.com/KratosMultiphysics/Kratos
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■ Figure 4. IGA+SBM for 2D/3D problems. 

Finally, Figure 5 shows a convergence comparison between standard IGA and IGA with SBM for 

the case of circular geometry. No big loss is evident for the use of the SBM against the exact 

geometry of the body-fitted scenario. 

 

■  

Figure 5. Comparison of IGA body-fiitted and IGA + SBM convergence for a circle. 
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2. Towards a “penalty-free” Contact mechanics 

Contact mechanics investigates the interaction of surfaces under load, with emphasis on stress 

distribution, deformation, and phenomena such as friction and adhesion. This field is essential in 

various engineering applications, including mechanical systems, aerospace structures, and 

biomechanics, where precision is paramount for safety and performance. 

The theoretical foundations of contact mechanics were laid by Hertz [30], who developed 

analytical solutions for elastic contact between simple geometries. With the advent of 

computational methods, the field expanded significantly, particularly through the Finite Element 

Method (FEM). FEM allowed researchers to tackle more complex geometries and material 

behaviors, extending contact analysis to elastic-plastic transitions [31,32]. Additionally, multiscale 

models emerged, enabling the integration of microstructural interactions into macroscopic contact 

problems [33]. 

Contact Detection and Constraints in FEM 

Key challenges in FEM for contact mechanics include accurate contact detection and robust 

constraint enforcement. Standard techniques such as Lagrange multipliers and penalty methods 

have been extensively employed. The augmented Lagrangian method offers a compromise by 

combining the advantages of both approaches, providing better accuracy and stability at the cost 

of computational effort [34]. Advances in frictional and adhesive models, such as those developed 

by Kogut and Etsion [35], further enriched the analysis of contact behavior in applications like 

gear systems and material forming processes. 

Despite its strengths, FEM encounters limitations when dealing with complex geometries. 

Generating watertight meshes and ensuring continuity across complex surfaces are time-

consuming processes. These challenges prompted the development of alternative techniques, 

including Isogeometric Analysis (IGA). 

Isogeometric Analysis and Contact Mechanics 

Isogeometric Analysis (IGA), introduced by Hughes et al. [1], bridges the gap between Computer-

Aided Design (CAD) and Finite Element Analysis (FEA), enabling a direct integration of exact 

CAD geometries into computational workflows. Unlike traditional FEA, which approximates 

geometries with faceted meshes, IGA employs smooth spline-based basis functions, such as B-

splines and Non-Uniform Rational B-Splines (NURBS), to achieve precise geometric 

representation and high continuity across elements [36]. These features make IGA particularly 

advantageous in simulating complex contact mechanics problems, which are inherently nonlinear 

and exhibit non-smooth interactions. 

In the early applications of IGA to contact mechanics, Temizer et al. [38] and De Lorenzis et al. 

[38] highlighted its potential for handling complex scenarios, including large deformations and 

frictional behavior. IGA’s ability to eliminate geometric discontinuities reduces non-physical 

oscillations in contact interactions, a common issue in traditional FEA. The inherent smoothness 

and continuity of NURBS basis functions enable IGA to tackle the challenging mathematical 

formulations of contact mechanics effectively. 

To enforce contact constraints, IGA leverages several methods such as penalty methods, 

Lagrange multipliers [34], and augmented Lagrange methods [39]. Discretization strategies 

tailored to IGA, including the Mortar approach [40], Gauss Point-to-Segment (GPTS) methods 
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[41], and Segment-to-Segment (STS) methods [42], have been instrumental in enhancing the 

robustness and accuracy of contact simulations. 

Recent advancements, including adaptive refinement techniques using hierarchical NURBS and 

T-splines [43, 44], address challenges such as the small cut-cell problem and high computational 

costs associated with high-order continuity.  

The SBM has demonstrated success in solving elasticity and incompressible fluid dynamics 

problems, showing promise for extending IGA to more challenging applications, including 

immersed contact mechanics [45,46]. Its ability to handle complex 2D and 3D geometries with 

optimal convergence under Dirichlet boundary conditions highlights its potential as a game-

changing approach in computational contact mechanics. 

2.1 Governing equations and variational formulation 

Contact mechanics deals with the study of stresses and deformations arising at the interface 

between contacting bodies. In computational mechanics, the weak form of the governing 

equations is often employed to facilitate numerical implementation. 

The formulation of contact mechanics begins with the total elastic potential energy of the system, 

expressed as: 

𝑊 =  ∫
𝛺

𝛹𝑑𝛺 +  ∫
𝛤𝐶

𝜆𝑔𝑛𝑑𝑠 

where Ψ is the strain energy density, 𝛤𝐶 denotes the contact interface, λ is the Lagrange multiplier 

associated with the contact stress, and 𝑔𝑛 is the gap function, which measures the normal 

separation between contact surfaces. 

By introducing the variation of the potential energy, the weak form of the contact problem 

becomes: 

𝛿𝑊 =  ∫
𝛺

𝜎: 𝛿𝜖𝑑𝛺 + ∫
𝛤𝐶

(𝜆𝛿𝑔𝑛 + 𝑔𝑛𝛿𝜆)𝑑𝑠 =  0, 

where σ is the Cauchy stress tensor, and ϵ is the strain tensor. The term 𝜆𝛿𝑔𝑛 enforces the contact 

condition through the Lagrange multiplier, while gn 𝑔𝑛 𝛿𝜆 imposes the constraint on the gap. 

The challenge lies in enforcing the contact constraints,𝑔𝑛 ≤ 0 and 𝜆 ≥ 0, which together satisfy 

the complementarity condition 𝜆𝑔𝑛 =  0. 

2.1.1 Approaches to Enforcing Contact Constraints 

Several methods have been developed to enforce contact constraints, each with its own 

advantages and limitations. Two of the most widely used are the Lagrange multiplier method and 

the penalty method, both of which are foundational to modern contact mechanics algorithms. 
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Lagrange Multiplier Method 

The Lagrange multiplier method introduces an additional field, λ\lambdaλ, to explicitly enforce the 

contact constraints. The augmented variational form becomes: 

∫
𝛤𝐶

𝜆𝑔𝑛 𝑑𝑠, 

where λ acts as a contact force. This approach ensures exact constraint satisfaction but increases 

the number of unknowns in the system. The method is robust but computationally expensive due 

to the saddle-point nature of the resulting system. Furthermore, poor conditioning of the system 

matrix can complicate numerical solution strategies. 

Penalty Method 

The penalty method simplifies the implementation by replacing the constraint with a penalty term 

in the variational form: 

∫
𝛤𝐶

𝜖
2

𝑔𝑛
2𝑑𝑠, 

where 𝜖 >  0 is the penalty parameter. Larger values of ϵ enforce the constraints more strictly but 

can lead to numerical instability, while smaller values introduce constraint violations. Striking the 

right balance requires careful calibration, which can be problem-specific and nontrivial. 

Nitsche’s “penalty free” Method 

Nitsche’s method combines the strengths of both approaches by weakly enforcing contact 

constraints without introducing a Lagrange multiplier or requiring explicit penalty parameters. This 

formulation introduces stabilization terms that ensure numerical consistency and stability. The 

main idea is to substitute the lagrangian multiplier, 𝜆, which physically represents the normal 

stress at the contact boundary, exactly with the stress at the contact, 𝜎̄, that it’s directly computed 

from the displacements of the bodies involved in the contact and does not require additional 

degrees of freedom in the system. We can choose   

 𝜎̄  =  𝛾𝜎+ +  (1 − 𝛾) 𝜎− , with 𝛾 ∈ [0,1]  

to set the contact stress closer to the master or slave contact stresses. In this way the perturbation 

to the potential results as  

∫
𝛤𝐶

𝜎̄𝑔𝑛 𝑑𝑠. 

2.1.2 Remarks on Computational Implementation 

The implementation of these formulations is heavily dependent on the choice of discretization. In 

the context of this deliverable, IsoGeometric Analysis (IGA) and the Shifted Boundary Method 

(SBM) provide a robust framework for handling contact mechanics. IGA leverages NURBS basis 

functions for seamless integration with CAD geometries, eliminating geometric errors. SBM 
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enhances flexibility in defining boundaries, addressing challenges in handling immersed 

geometries. 

The penalty-free formulation adopted here simplifies implementation and avoids the challenges 

associated with Lagrange multipliers and penalty parameters, making it well-suited for complex 

industrial scenarios. As emphasized in Wriggers’ Computational Contact Mechanics [34], the 

choice of method must balance accuracy, computational cost, and ease of implementation. The 

penalty-free Nitsche formulation represents a significant step forward in this balance. 

2.2 Contact Algorithm and Benchmarks 

2.2.1 Contact Algorithm 

The contact algorithm developed in this work leverages a robust framework to handle volume-to-

volume contact using the Nitsche penalty-free formulation in the IsoGeometric Analysis (IGA) 

framework. The methodology includes the following components: 

1. Nearest Projection Search for Contact Pairs 

The identification of contact pairs is performed using a nearest projection algorithm. For each 

integration point on the master surface (the mortar surface in this formulation), a projection is 

performed onto the slave surface. This ensures the identification of the closest corresponding 

points, forming potential contact pairs. The search accounts for the deformation of the bodies, 

allowing for dynamic updates to the contact pairs at each load step. This capability is particularly 

important for scenarios involving large deformations, where the contact interface evolves over 

time. 

2. Activation and Deactivation Strategy 

The contact algorithm employs a strategy for activating and deactivating contact pairs during the 

Newton-Raphson iterative process. At each iteration: 

● The normal gap 𝑔𝑛  and the contact stress λ are evaluated for each contact pair. 

● Activation: Contact pairs are activated if𝑔𝑛 ≤ 0, indicating penetration. The activation 

enforces the contact condition in subsequent iterations to resolve the penetration. 

● Deactivation: If the contact stress λ>0, indicating traction (pulling apart), the contact 

pair is deactivated to prevent unphysical behavior such as "gluing." The iterative 

process continues until no contact pairs are updated between successive iterations, 

ensuring a stable and consistent solution. 

2.2.2 Benchmarks 

To validate the implementation, two classical benchmark problems were analyzed: 

1. Patch Test 

The patch test evaluates the ability of the algorithm to maintain stress and displacement continuity 

across a contact interface between two squares with non-coincident meshes. The Nitsche 

penalty-free formulation demonstrated excellent accuracy, achieving stress and displacement 

continuity within numerical tolerances. This result confirms the robustness of the nearest 

projection search and the contact activation/deactivation strategy. 
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Figure 3:  Patch test, Mesh (above), vertical-displacent (left ) vertical stress (right). 

2. Hertz Contact Problem 

The Hertz contact problem involves the interaction of a cylinder (or circle in 2D) with a rigid wall, 

serving as a well-known analytical reference for contact mechanics. The implementation 

accurately reproduces the contact pressure distribution, confirming the capability of the algorithm 

to capture normal stresses and displacements. In this case: 

● The pressure distribution follows the classical parabolic shape, consistent with the 

analytical solution. 

● The vertical displacement along the contact interface matches the derived theoretical 

solution, further validating the accuracy of the contact formulation. 

These benchmarks highlight the robustness and accuracy of the contact algorithm, demonstrating 

its applicability to a wide range of contact problems, from simple linear cases to more complex 
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non-linear scenarios. The results also underscore the advantages of the penalty-free Nitsche 

formulation in maintaining stability and avoiding the pitfalls associated with traditional penalty-

based methods. 

 

 

 

 

 

 

 

 

 

 

Figure 4: Hertz Circle-Wall contact, stress comparison with the true solution on the contact 

boundary.  

 

3. Comparison with FEM 

Finally a punch test has been checked against a well tested FEM contact solver with ALM. The 

penalty-free/IGA body fitted algorithm proves to converge fast the FEM accurate solution.  
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Figure 5:Punch test horizontal displacements, FEM (above) vs. IGA(below) 

2.3 Road to Immersed Contact in Kratos 

The next step in this research is to extend the current contact mechanics framework to handle 

immersed contact scenarios, leveraging the Shifted Boundary Method (SBM) within the 

IsoGeometric Analysis (IGA) framework. The SBM offers a flexible and robust technique for 

solving problems involving complex geometries and immersed boundaries, making it an ideal 

candidate for immersed contact mechanics. 

Current Capabilities 

At present, the SBM has been successfully implemented in Kratos Multiphysics framework for 

solving 2D structural mechanics problems under the IGA framework. Both body-fitted and SBM 

approaches have been validated, demonstrating the following: 

● Optimal Convergence for Dirichlet Boundary Conditions: The SBM preserves 

optimal convergence rates when only Dirichlet boundary conditions are applied, matching 

the performance of body-fitted techniques. 

● Handling Neumann Boundary Conditions: While the SBM loses one order of 

convergence for Neumann boundary conditions, it still provides accurate results with 

reduced pre-processing and increased flexibility in handling complex geometries. 
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● Boundary Condition Imposition: Both the standard Nitsche method and the penalty-

free formulation perform reliably for imposing boundary conditions within the SBM 

framework. 

 

3. CONCLUSIONS    

The integration of the Shifted Boundary Method (SBM) into the Isogeometric Analysis (IGA) 

framework represents a significant advancement in computational mechanics. This synergy 

addresses challenges in complex geometry handling and contact mechanics, leveraging SBM’s 

flexibility and IGA’s precise geometric representation to achieve robust and efficient simulations. 

The SBM simplifies the imposition of boundary conditions by shifting them to surrogate 

boundaries, reducing preprocessing complexity while preserving the accuracy of IGA. This 

approach proves particularly effective for intricate geometries, ensuring reliable results even for 

Neumann boundary conditions, though with a minor reduction in convergence order. 

In contact mechanics, the penalty-free Nitsche formulation stands out for its ability to enforce 

constraints without requiring Lagrange multipliers or penalty parameters. This simplifies the 

computational framework while maintaining accuracy and stability, as demonstrated by 

benchmarks such as the Hertz contact problem and the patch test. IGA’s inherent smoothness 

and exact geometry representation further enhance its ability to model contact interactions with 

precision and efficiency. 

Looking ahead, the SBM-IGA framework offers significant potential for tackling immersed contact 

mechanics, enabling simulations of even greater complexity. This combination of theoretical 

innovation and practical efficiency provides a solid foundation for advancing computational 

mechanics to meet the demands of modern engineering challenges. 
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